Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Bone Marrow Transplant ; 57(2): 156-159, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35046545

RESUMO

In February 2021, the 'Advanced Therapy Medicinal Product' (ATMP) ARI-0001 (CART19-BE-01), developed at Hospital Clínic de Barcelona (Spain), received authorization from the Spanish Agency of Medicines and Medical Devices (AEMPS) under the 'hospital exemption' (HE) approval pathway for the treatment of patients aged >25 years with relapsed/refractory (RR) acute lymphoblastic leukemia (ALL). The HE pathway foreseen by the European Regulation establishing the legal framework for ATMPs intended to be placed on the market in the EU, allows access to ATMPs prepared on a non-routine basis, according to quality standards, like a custom-made product for an individual patient. Its use is limited to the same Member State where it was developed, in a hospital under the responsibility of a medical practitioner. HE-ATMPs must comply with national traceability and pharmacovigilance requirements and specific quality standards. HE offers an opportunity to develop ATMPs in close contact with clinical practice, with the quality and rapid access needed by patients and at a lower cost compared to regular market authorization. However, many barriers need to be overcome. Here we discuss relevant aspects of the development and authorization of ARI-0001 in the context of the heterogeneous frame of the European Regulation implementation across the Member States.


Assuntos
Receptores de Antígenos Quiméricos , União Europeia , Hospitais , Humanos , Espanha
2.
J Immunother Cancer ; 9(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34907029
3.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638840

RESUMO

BACKGROUND: The aim of this study was to test the feasibility and safety of subretinal transplantation of human induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) cells into the healthy margins and within areas of degenerative retina in a swine model of geographic atrophy (GA). METHODS: Well-delimited selective outer retinal damage was induced by subretinal injection of NaIO3 into one eye in minipigs (n = 10). Thirty days later, a suspension of hiPSC-derived RPE cells expressing green fluorescent protein was injected into the subretinal space, into the healthy margins, and within areas of degenerative retina. In vivo follow-up was performed by multimodal imaging. Post-mortem retinas were analyzed by immunohistochemistry and histology. RESULTS: In vitro differentiated hiPSC-RPE cells showed a typical epithelial morphology, expressed RPE-related genes, and had phagocytic ability. Engrafted hiPSC-RPE cells were detected in 60% of the eyes, forming mature epithelium in healthy retina extending towards the border of the atrophy. Histological analysis revealed RPE interaction with host photoreceptors in the healthy retina. Engrafted cells in the atrophic zone were found in a patchy distribution but failed to form an epithelial-like layer. CONCLUSIONS: These results might support the use of hiPSC-RPE cells to treat atrophic GA by providing a housekeeping function to aid the overwhelmed remnant RPE, which might improve its survival and therefore slow down the progression of GA.


Assuntos
Atrofia Geográfica , Células-Tronco Pluripotentes Induzidas , Epitélio Pigmentado da Retina , Animais , Antígenos de Diferenciação/biossíntese , Modelos Animais de Doenças , Regulação da Expressão Gênica , Atrofia Geográfica/metabolismo , Atrofia Geográfica/patologia , Atrofia Geográfica/cirurgia , Xenoenxertos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/transplante , Suínos
4.
Hum Gene Ther ; 32(19-20): 1004-1007, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34476985

RESUMO

The hospital exemption (HE) allows for the use of advanced therapy medicinal products (ATMPs) next to marketing authorization (MA), but under special conditions. The HE is only applicable to individual patients treated in the hospital setting and it is limited to member states of the European Union (EU); HE is mainly conceded to the academic centers that developed the ATMP, being granted by the national competent authority (NCA), which, in the case of Spain, is the Spanish Agency of Medicines and Medical Devices (AEMPS). The HE follows strict standards of traceability, pharmacovigilance, and quality. In February 2021, our ATMP ARI-0001, a new autologous chimeric antigen receptor (CAR) targeting CD19, was approved by AEMPS under HE for patients >25 years with relapsed or refractory CD19+ acute lymphoblastic leukemia. This authorization was a first step in the development of, and access to, academic CAR T cell products in the EU. The fact that HE is limited to a specific country and hospital, the need of continuous evaluation by the NCA, and the potential future overlap with other centrally approved ATMPs, suggest that the HE could be used as an intermediate step before obtaining a centralized MA by the European Medicines Agency.


Assuntos
Receptores de Antígenos Quiméricos , Europa (Continente) , União Europeia , Hospitais , Humanos , Receptores de Antígenos Quiméricos/genética , Linfócitos T
5.
Mol Ther ; 29(2): 636-644, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33010231

RESUMO

We evaluated the administration of ARI-0001 cells (chimeric antigen receptor T cells targeting CD19) in adult and pediatric patients with relapsed/refractory CD19+ malignancies. Patients received cyclophosphamide and fludarabine followed by ARI-0001 cells at a dose of 0.4-5 × 106 ARI-0001 cells/kg, initially as a single dose and later split into 3 fractions (10%, 30%, and 60%) with full administration depending on the absence of cytokine release syndrome (CRS). 58 patients were included, of which 47 received therapy: 38 with acute lymphoblastic leukemia (ALL), 8 with non-Hodgkin's lymphoma, and 1 with chronic lymphocytic leukemia. In patients with ALL, grade ≥3 CRS was observed in 13.2% (26.7% before versus 4.3% after the amendment), grade ≥3 neurotoxicity was observed in 2.6%, and the procedure-related mortality was 7.9% at day +100, with no procedure-related deaths after the amendment. The measurable residual disease-negative complete response rate was 71.1% at day +100. Progression-free survival was 47% (95% IC 27%-67%) at 1 year: 51.3% before versus 39.5% after the amendment. Overall survival was 68.6% (95% IC 49.2%-88%) at 1 year. In conclusion, the administration of ARI-0001 cells provided safety and efficacy results that are comparable with other academic or commercially available products. This trial was registered as ClinicalTrials.gov: NCT03144583.


Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Terapia Baseada em Transplante de Células e Tecidos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Masculino , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias/patologia , Recidiva , Linfócitos T/metabolismo
6.
Front Immunol ; 11: 482, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528460

RESUMO

Development of semi-automated devices that can reduce the hands-on time and standardize the production of clinical-grade CAR T-cells, such as CliniMACS Prodigy from Miltenyi, is key to facilitate the development of CAR T-cell therapies, especially in academic institutions. However, the feasibility of manufacturing CAR T-cell products from heavily pre-treated patients with this system has not been demonstrated yet. Here we report and characterize the production of 28 CAR T-cell products in the context of a phase I clinical trial for CD19+ B-cell malignancies (NCT03144583). The system includes CD4-CD8 cell selection, lentiviral transduction and T-cell expansion using IL-7/IL-15. Twenty-seven out of 28 CAR T-cell products manufactured met the full list of specifications and were considered valid products. Ex vivo cell expansion lasted an average of 8.5 days and had a mean transduction rate of 30.6 ± 13.44%. All products obtained presented cytotoxic activity against CD19+ cells and were proficient in the secretion of pro-inflammatory cytokines. Expansion kinetics was slower in patient's cells compared to healthy donor's cells. However, product potency was comparable. CAR T-cell subset phenotype was highly variable among patients and largely determined by the initial product. TCM and TEM were the predominant T-cell phenotypes obtained. 38.7% of CAR T-cells obtained presented a TN or TCM phenotype, in average, which are the subsets capable of establishing a long-lasting T-cell memory in patients. An in-depth analysis to identify individual factors contributing to the optimal T-cell phenotype revealed that ex vivo cell expansion leads to reduced numbers of TN, TSCM, and TEFF cells, while TCM cells increase, both due to cell expansion and CAR-expression. Overall, our results show for the first time that clinical-grade production of CAR T-cells for heavily pre-treated patients using CliniMACS Prodigy system is feasible, and that the obtained products meet the current quality standards of the field. Reduced ex vivo expansion may yield CAR T-cell products with increased persistence in vivo.


Assuntos
Imunoterapia Adotiva/métodos , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Centros Médicos Acadêmicos , Adolescente , Adulto , Automação , Reatores Biológicos , Proliferação de Células , Células Cultivadas , Criança , Citotoxicidade Imunológica , Feminino , Humanos , Memória Imunológica , Masculino , Sistemas Automatizados de Assistência Junto ao Leito , Adulto Jovem
7.
Mol Ther Methods Clin Dev ; 12: 134-144, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30623002

RESUMO

Genetically modifying autologous T cells to express an anti-CD19 chimeric antigen receptor (CAR) has shown impressive response rates for the treatment of CD19+ B cell malignancies in several clinical trials (CTs). Making this treatment available to our patients prompted us to develop a novel CART19 based on our own anti-CD19 antibody (A3B1), followed by CD8 hinge and transmembrane region, 4-1BB- and CD3z-signaling domains. We show that A3B1 CAR T cells are highly cytotoxic and specific against CD19+ cells in vitro, inducing secretion of pro-inflammatory cytokines and CAR T cell proliferation. In vivo, A3B1 CAR T cells are able to fully control disease progression in an NOD.Cg-Prkdc scid Il2rd tm1Wjl /SzJ (NSG) xenograph B-ALL mouse model. Based on the pre-clinical data, we conclude that our CART19 is clearly functional against CD19+ cells, to a level similar to other CAR19s currently being used in the clinic. Concurrently, we describe the implementation of our CAR T cell production system, using lentiviral vector and CliniMACS Prodigy, within a medium-sized academic institution. The results of the validation phase show our system is robust and reproducible, while maintaining a low cost that is affordable for academic institutions. Our model can serve as a paradigm for similar institutions, and it may help to make CAR T cell treatment available to all patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA