Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; 165: 104038, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37952902

RESUMO

Functional annotation is a critical step in the analysis of genomic data, as it provides insight into the function of individual genes and the pathways in which they participate. Currently, there is no consensus on the best computational approach for assigning functional annotation. This study compares three functional annotation methods (BLAST, eggNOG-Mapper, and InterProScan) in their ability to assign Gene Ontology terms in two species of Insecta with differing levels of annotation, Bombyx mori and Manduca sexta. The methods were compared for their annotation coverage, number of term assignments, term agreement and non-overlapping terms. Here we show that there are large discrepancies in gene ontology term assignment among the three computational methods, which could lead to confounding interpretations of data and non-comparable results. This study provide insight into the strengths and weaknesses of each computational method and highlight the need for more standardized methods of functional annotation.


Assuntos
Bombyx , Lepidópteros , Manduca , Animais , Lepidópteros/genética , Transcriptoma , Manduca/genética , Bombyx/genética , Genoma , Anotação de Sequência Molecular
2.
Elife ; 122023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38113081

RESUMO

Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ('Myomatrix arrays') that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a 'motor unit,' during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and identifying pathologies of the motor system.


Assuntos
Neurônios Motores , Primatas , Ratos , Camundongos , Animais , Neurônios Motores/fisiologia , Eletrodos , Fibras Musculares Esqueléticas
3.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36865176

RESUMO

Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ("Myomatrix arrays") that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a "motor unit", during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and in identifying pathologies of the motor system.

4.
Arthropod Struct Dev ; 72: 101232, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610222

RESUMO

In holometabolous insects, metamorphosis involves restructuring the musculature to accommodate adult-specific anatomy and behaviors. Evidence from experiments on remodeled muscles, as well as those that develop de novo, suggests that signals from the nervous system support adult muscle development by controlling myoblast proliferation rate. However, the dorsolongitudinal flight muscles (DLMs) of Manduca sexta undergo a mixed developmental program involving larval muscle fibers, and it is not known if neurons play the same role in the formation of these muscles. To address this question, we have blocked the most promising candidate pathways for neural input and examined the DLMs for changes in proliferation. Our results show that DLM development does not depend on neural activity, Hedgehog signaling, or EGF signaling. It remains to be determined how DLM growth is controlled and why neurally mediated proliferation differs between individual muscles.


Assuntos
Manduca , Animais , Proteínas Hedgehog/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Neurônios , Metamorfose Biológica/fisiologia , Desenvolvimento Muscular , Proliferação de Células , Mioblastos , Larva , Voo Animal/fisiologia
5.
ACS Biomater Sci Eng ; 8(9): 3785-3796, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35977409

RESUMO

Cell-cultured fat could provide important elements of flavor, nutrition, and texture to enhance the quality and therefore expand consumer adoption of alternative meat products. In contrast to cells from livestock animals, insect cells have been proposed as a relatively low-cost and scalable platform for tissue engineering and muscle cell-derived cultured meat production. Furthermore, insect fat cells have long been cultured and characterized for basic biology and recombinant protein production but not for food production. To develop a food-relevant approach to insect fat cell cultivation and tissue engineering, Manduca sexta cells were cultured and induced to accumulate lipids in 2D and 3D formats within decellularized mycelium scaffolding. The resultant in vitro fat tissues were characterized and compared to in vivo fat tissue data by imaging, lipidomics, and texture analyses. The cells exhibited robust lipid accumulation when treated with a 0.1 mM soybean oil emulsion and had "healthier" fat profiles, as measured by the ratio of unsaturated to saturated fatty acids. Mycelium scaffolding provided a simple, food-grade approach to support the 3D cell cultures and lipid accumulation. This approach provides a low-cost, scalable, and nutritious method for cultured fat production.


Assuntos
Ácidos Graxos , Manduca , Agricultura , Animais , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Manduca/metabolismo
6.
Arthropod Struct Dev ; 68: 101170, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35576787

RESUMO

During metamorphosis, the dorsolongitudinal flight muscles (DLMs) of both the moth Manduca sexta and the fly Drosophila melanogaster develop from the remnants of larval muscles called larval scaffolds. Although this developmental program has been conserved across highly disparate taxa, the role of the larval scaffold remains unclear. Ablation experiments have demonstrated that the Drosophila DLM does not require the scaffold, but the resulting de novo muscles vary highly in fiber number, and their functional characteristics were not examined. To address this question in Manduca, we have surgically ablated the DLM precursors in Manduca sexta larvae and assayed the resulting DLMs in pharate adults using X-ray micro-CT and phalloidin histology. Following ablation, animals were able to form de novo DLMs with normal myofibril alignment, but these muscles had an altered shape and highly variable number of fascicles. Our results suggest that the larval scaffold is not required for DLM development in Manduca sexta, but appears to define the number of fascicles in the adult muscle, as previously found in Drosophila. Additionally, our ablated animals were able to generate flight, further suggesting that the use of a larval scaffold is a modification on the more ancestral myogenesis program.


Assuntos
Manduca , Animais , Drosophila , Drosophila melanogaster , Larva , Manduca/fisiologia , Metamorfose Biológica , Músculos/fisiologia
7.
J Exp Biol ; 224(13): 1-7, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34142703

RESUMO

Manduca sexta larvae are an important model system for studying the neuromechanics of soft body locomotion. They climb on plants using the abdominal prolegs to grip and maneuver in any orientation and on different surfaces. The prolegs grip passively with an array of cuticular hooks, and grip release is actively controlled by retractor muscles inserted into the soft planta membrane at the proleg tip. Until now, the principal planta retractor muscles (PPRMs) in each body segment were thought to be a single fiber bundle originating on the lateral body wall. Here, using high resolution X-ray microtomography of intact animals, we show that the PPRM is a more complex muscle consisting of multiple contractile fibers originating at several distinct sites on the proleg. Furthermore, we show that there are segmental differences in the number and size of some of these fiber groups which suggests that the prolegs may operate differently along the anterior-posterior axis.


Assuntos
Manduca , Animais , Extremidades , Larva , Locomoção , Músculos
8.
J Exp Biol ; 223(Pt 16)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32647020

RESUMO

In response to a noxious stimulus on the abdomen, caterpillars lunge their head towards the site of stimulation. This nocifensive 'strike' behavior is fast (∼0.5 s duration), targeted and usually unilateral. It is not clear how the fast strike movement is generated and controlled, because caterpillar muscle develops peak force relatively slowly (∼1 s) and the baseline hemolymph pressure is low (<2 kPa). Here, we show that strike movements are largely driven by ipsilateral muscle activation that propagates from anterior to posterior segments. There is no sustained pre-strike muscle activation that would be expected for movements powered by the rapid release of stored elastic energy. Although muscle activation on the ipsilateral side is correlated with segment shortening, activity on the contralateral side consists of two phases of muscle stimulation and a marked decline between them. This decrease in motor activity precedes rapid expansion of the segment on the contralateral side, presumably allowing the body wall to stretch more easily. The subsequent increase in contralateral motor activation may slow or stabilize movements as the head reaches its target. Strike behavior is therefore a controlled fast movement involving the coordination of muscle activity on each side and along the length of the body.


Assuntos
Manduca , Animais , Larva , Movimento , Músculos
9.
J Exp Biol ; 223(Pt 14)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32527957

RESUMO

Most animals can successfully travel across cluttered, uneven environments and cope with enormous changes in surface friction, deformability and stability. However, the mechanisms used to achieve such remarkable adaptability and robustness are not fully understood. Even more limited is the understanding of how soft, deformable animals such as tobacco hornworm Manduca sexta (caterpillars) can control their movements as they navigate surfaces that have varying stiffness and are oriented at different angles. To fill this gap, we analyzed the stepping patterns of caterpillars crawling on two different types of substrate (stiff and soft) and in three different orientations (horizontal and upward/downward vertical). Our results show that caterpillars adopt different stepping patterns (i.e. different sequences of transition between the swing and stance phases of prolegs in different body segments) based on substrate stiffness and orientation. These changes in stepping pattern occur more frequently in the upward vertical orientation. The results of this study suggest that caterpillars can detect differences in the material properties of the substrate on which they crawl and adjust their behavior to match those properties.


Assuntos
Locomoção , Manduca , Animais , Fenômenos Biomecânicos , Larva
10.
J Exp Biol ; 223(Pt 3)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31932302

RESUMO

The caterpillar Manduca sexta produces a highly stereotyped strike behavior in response to noxious thermal or mechanical stimuli to the abdomen. This rapid movement is targeted to the site of the stimulus, but the identity of the nociceptive sensory neurons are currently unknown. It is also not known whether both mechanical and thermal stimuli are detected by the same neurons. Here, we show that the likelihood of a strike increases with the strength of the stimulus and that activity in nerves innervating the body wall increases rapidly in response to noxious stimuli. Mechanical and thermal stimuli to the dorsal body wall activate the same sensory unit, suggesting it represents a multimodal neuron. This is further supported by the effects of rapidly repeated thermal or mechanical stimuli, which cause a depression of neuronal responsiveness that is generalized across modalities. Mapping the receptive fields of neurons responding to strong thermal stimuli indicates that these multimodal, nociceptive units are produced by class γ multidendritic neurons in the body wall.


Assuntos
Manduca/fisiologia , Nociceptividade , Nociceptores/fisiologia , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Manduca/crescimento & desenvolvimento , Estimulação Física
11.
J Comp Neurol ; 528(5): 805-815, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31644815

RESUMO

In addition to camouflage and chemical toxicity, many caterpillars defend themselves against predators with sudden sharp movements. For smaller species, these movements propel the body away from the threat, but in larger caterpillars, such as the tobacco hornworm, Manduca sexta, the movement is a defensive strike targeted to a noxious stimulus on the abdomen. Previously, strikes have been studied using mechanical stimulation like poking or pinching the insect, but such stimuli are hard to control. They also introduce mechanical perturbations that interfere with measurements of the behavior. We have now established that strike behavior can be evoked using infra-red lasers to provide a highly localized and repeatable heat stimulus. The latency from the end of an effective stimulus to the start of head movement decreased with repeated stimuli and this effect generalized to other stimulus locations indicating a centrally mediated component of sensitization. The tendency to strike increased with two successive subthreshold stimuli. When delivered to different locations or to a single site, this split-pulse stimulation revealed an additional site-specific sensitization that has not previously been described in Manduca. Previous work shows that strong stimuli increases the effectiveness of sensory stimulation by activating a long-lasting muscarinic cation current in motoneurons. Injection of muscarinic cholinergic antagonists, scopolamine methyl bromide or quinuclidinyl benzilate, only decreased the strike probability evoked by paired stimuli at two locations and not at a single site. This strongly suggests a role of muscarinic acetylcholine receptors in the generalized sensitization of nociceptive responses in caterpillars.


Assuntos
Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Manduca/fisiologia , Nociceptividade/fisiologia , Animais , Temperatura Alta , Neurônios Motores/metabolismo , Receptores Muscarínicos/metabolismo
12.
J Exp Biol ; 221(Pt 13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29724774

RESUMO

Because soft animals are deformable, their locomotion is particularly affected by external forces and they are expected to face challenges controlling movements in different environments and orientations. We have used the caterpillar Manduca sexta to study neuromechanical strategies of soft-bodied scansorial locomotion. Manduca locomotion critically depends on the timing of proleg grip release, which is mediated by the principal planta retractor muscle and its single motoneuron, PPR. During upright crawling, PPR firing frequency increases approximately 0.6 s before grip release but during upside-down crawling, this activity begins significantly earlier, possibly pre-tensioning the muscle. Under different loading conditions the timing of PPR activity changes relative to the stance/swing cycle. PPR motor activity is greater during upside-down crawling but these frequency changes are too small to produce significant differences in muscle force. Detailed observation of the proleg tip show that it swells before the retractor muscle is activated. This small movement is correlated with the activation of more posterior body segments, suggesting that it results from indirect mechanical effects. The timing and direction of this proleg displacement implies that proleg grip release is a dynamic interplay of mechanics and active neural control.


Assuntos
Extremidades/fisiologia , Larva/fisiologia , Locomoção/fisiologia , Manduca/fisiologia , Neurônios Motores/fisiologia , Animais , Fenômenos Biomecânicos , Manduca/crescimento & desenvolvimento
13.
R Soc Open Sci ; 3(12): 160766, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28083114

RESUMO

All animals use mechanosensors to help them move in complex and changing environments. With few exceptions, these sensors are embedded in soft tissues that deform in normal use such that sensory feedback results from the interaction of an animal with its environment. Useful information about the environment is expected to be embedded in the mechanical responses of the tissues during movements. To explore how such sensory information can be used to control movements, we have developed a soft-bodied crawling robot inspired by a highly tractable animal model, the tobacco hornworm Manduca sexta. This robot uses deformations of its body to detect changes in friction force on a substrate. This information is used to provide local sensory feedback for coupled oscillators that control the robot's locomotion. The validity of the control strategy is demonstrated with both simulation and a highly deformable three-dimensionally printed soft robot. The results show that very simple oscillators are able to generate propagating waves and crawling/inching locomotion through the interplay of deformation in different body parts in a fully decentralized manner. Additionally, we confirmed numerically and experimentally that the gait pattern can switch depending on the surface contact points. These results are expected to help in the design of adaptable, robust locomotion control systems for soft robots and also suggest testable hypotheses about how soft animals use sensory feedback.

14.
Brain Behav Evol ; 85(1): 47-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25765841

RESUMO

Recent major advances in understanding the organizational principles underlying motor control have focused on a small number of animal species with stiff articulated skeletons. These model systems have the advantage of easily quantifiable mechanics, but the neural codes underlying different movements are difficult to characterize because they typically involve a large population of neurons controlling each muscle. As a result, studying how neural codes drive adaptive changes in behavior is extremely challenging. This problem is highly simplified in the tobacco hawkmoth Manduca sexta, which, in its larval stage (caterpillar), is predominantly soft-bodied. Since each M. sexta muscle is innervated by one, occasionally two, excitatory motor neurons, the electrical activity generated by each muscle can be mapped to individual motor neurons. In the present study, muscle activation patterns were converted into motor neuron frequency patterns by identifying single excitatory junction potentials within recorded electromyographic traces. This conversion was carried out with single motor neuron resolution thanks to the high signal selectivity of newly developed flexible microelectrode arrays, which were specifically designed to record from M. sexta muscles. It was discovered that the timing of motor neuron activity and gait kinematics depend on the orientation of the plane of motion during locomotion. We report that, during climbing, the motor neurons monitored in the present study shift their activity to correlate with movements in the animal's more anterior segments. This orientation-dependent shift in motor activity is in agreement with the expected shift in the propulsive forces required for climbing. Our results suggest that, contrary to what has been previously hypothesized, M.sexta uses central command timing for adaptive load compensation.


Assuntos
Locomoção/fisiologia , Manduca/citologia , Manduca/fisiologia , Neurônios Motores/fisiologia , Orientação/fisiologia , Animais , Larva/fisiologia , Manduca/anatomia & histologia , Músculos/fisiologia
15.
Bioinspir Biomim ; 10(1): 016018, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25650372

RESUMO

Caterpillars show a remarkable ability to get around in complex environments (e.g. tree branches). Part of this is attributable to crochets which allow the animal to firmly attach to a wide range of substrates. This introduces an additional challenge to locomotion, however, as the caterpillar needs a way to coordinate the release of the crochets and the activation of muscles to adjust body posture. Typical control models have focused on global coordination through a central pattern generator (CPG). This paper develops an alternative to the CPG, which accomplishes the same task and is robust to a wide range of body properties and control parameter variation. A one-dimensional model is proposed which consists of lumped masses connected by a network of springs, dampers and muscles. Computer simulations of the controller/model system are performed to verify its robustness and to permit comparison between the generated gaits and those observed in real caterpillars (specifically Manduca sexta.).


Assuntos
Extremidades/fisiologia , Marcha/fisiologia , Manduca/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Reflexo/fisiologia , Animais , Simulação por Computador , Locomoção/fisiologia , Manduca/anatomia & histologia , Contração Muscular/fisiologia , Robótica/instrumentação , Robótica/métodos
16.
Artif Life ; 20(1): 143-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23373976

RESUMO

Completely soft and flexible robots offer to revolutionize fields ranging from search and rescue to endoscopic surgery. One of the outstanding challenges in this burgeoning field is the chicken-and-egg problem of body-brain design: Development of locomotion requires the preexistence of a locomotion-capable body, and development of a location-capable body requires the preexistence of a locomotive gait. This problem is compounded by the high degree of coupling between the material properties of a soft body (such as stiffness or damping coefficients) and the effectiveness of a gait. This article synthesizes four years of research into soft robotics, in particular describing three approaches to the co-discovery of soft robot morphology and control. In the first, muscle placement and firing patterns are coevolved for a fixed body shape with fixed material properties. In the second, the material properties of a simulated soft body coevolve alongside locomotive gaits, with body shape and muscle placement fixed. In the third, a developmental encoding is used to scalably grow elaborate soft body shapes from a small seed structure. Considerations of the simulation time and the challenges of physically implementing soft robots in the real world are discussed.


Assuntos
Modelos Teóricos , Robótica , Algoritmos , Marcha
17.
J Exp Biol ; 216(Pt 3): 379-87, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23325858

RESUMO

Aimed movements require that an animal accurately locates the target and correctly reaches that location. One such behavior is the defensive strike seen in Manduca sexta larva. These caterpillars respond to noxious mechanical stimuli applied to their abdomen with a strike of the mandibles towards the location of the stimulus. The accuracy with which the first strike movement reaches the stimulus site depends on the location of the stimulus. Reponses to dorsal stimuli are less accurate than those to ventral stimuli and the mandibles generally land ventral to the stimulus site. Responses to stimuli applied to anterior abdominal segments are less accurate than responses to stimuli applied to more posterior segments and the mandibles generally land posterior to the stimulus site. A trade-off between duration of the strike and radial accuracy is only seen in the anterior stimulus location (body segment A4). The lower accuracy of the responses to anterior and dorsal stimuli can be explained by the morphology of the animal; to reach these areas the caterpillar needs to move its body into a tight curve. Nevertheless, the accuracy is not exact in locations that the animal has shown it can reach, which suggests that consistently aiming more ventral and posterior of the stimulation site might be a defense strategy.


Assuntos
Manduca/anatomia & histologia , Manduca/fisiologia , Animais , Comportamento Animal , Fenômenos Biomecânicos , Humanos , Masculino , Movimento
18.
PLoS One ; 7(2): e31598, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22355379

RESUMO

Skeletal muscle tissue engineering has the potential to treat tissue loss and degenerative diseases. However, these systems are also applicable for a variety of devices where actuation is needed, such as microelectromechanical systems (MEMS) and robotics. Most current efforts to generate muscle bioactuators are focused on using mammalian cells, which require exacting conditions for survival and function. In contrast, invertebrate cells are more environmentally robust, metabolically adaptable and relatively autonomous. Our hypothesis is that the use of invertebrate muscle cells will obviate many of the limitations encountered when mammalian cells are used for bioactuation. We focus on the tobacco hornworm, Manduca sexta, due to its easy availability, large size and well-characterized muscle contractile properties. Using isolated embryonic cells, we have developed culture conditions to grow and characterize contractile M. sexta muscles. The insect hormone 20-hydroxyecdysone was used to induce differentiation in the system, resulting in cells that stained positive for myosin, contract spontaneously for the duration of the culture, and do not require media changes over periods of more than a month. These cells proliferate under normal conditions, but the application of juvenile hormone induced further proliferation and inhibited differentiation. Cellular metabolism under normal and low glucose conditions was compared for C2C12 mouse and M. sexta myoblast cells. While differentiated C2C12 cells consumed glucose and produced lactate over one week as expected, M. sexta muscle did not consume significant glucose, and lactate production exceeded mammalian muscle production on a per cell basis. Contractile properties were evaluated using index of movement analysis, which demonstrated the potential of these cells to perform mechanical work. The ability of cultured M. sexta muscle to continuously function at ambient conditions without medium replenishment, combined with the interesting metabolic properties, suggests that this cell source is a promising candidate for further investigation toward bioactuator applications.


Assuntos
Diferenciação Celular , Manduca/embriologia , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/citologia , Animais , Células Cultivadas , Ecdisterona/farmacologia , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Imunofluorescência , Manduca/efeitos dos fármacos , Manduca/metabolismo , Camundongos , Contração Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo
19.
J Exp Biol ; 214(Pt 7): 1194-204, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21389205

RESUMO

Caterpillars can increase their body mass 10,000-fold in 2 weeks. It is therefore remarkable that most caterpillars appear to maintain the same locomotion kinematics throughout their entire larval stage. This study examined how the body properties of a caterpillar might change to accommodate such dramatic changes in body load. Using Manduca sexta as a model system, we measured changes in body volume, tissue density and baseline body pressure, and the dimensions of load-bearing tissues (the cuticle and muscles) over a body mass range from milligrams to several grams. All Manduca biometrics relevant to the hydrostatic skeleton scaled allometrically but close to the isometric predictions. Body density and pressure were almost constant. We next investigated the effects of scaling on the bending stiffness of the caterpillar hydrostatic skeleton. The anisotropic non-linear mechanical response of Manduca muscles and soft cuticle has previously been quantified and modeled with constitutive equations. Using biometric data and these material laws, we constructed finite element models to simulate a hydrostatic skeleton under different conditions. The results show that increasing the internal pressure leads to a non-linear increase in bending stiffness. Increasing the body size results in a decrease in the normalized bending stiffness. Muscle activation can double this stiffness in the physiological pressure range, but thickening the cuticle or increasing the muscle area reduces the structural stiffness. These non-linear effects may dictate the effectiveness of a hydrostatic skeleton at different sizes. Given the shared anatomy and size variation in Lepidoptera larvae, these mechanical scaling constraints may implicate the diverse locomotion strategies in different species.


Assuntos
Locomoção , Manduca/fisiologia , Animais , Comportamento Animal , Fenômenos Biomecânicos , Tamanho Corporal , Peso Corporal , Epiderme/fisiologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Manduca/crescimento & desenvolvimento , Modelos Biológicos , Músculos/fisiologia , Suporte de Carga
20.
Bioinspir Biomim ; 6(1): 016001, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21160115

RESUMO

Most bio-inspired robots have been based on animals with jointed, stiff skeletons. There is now an increasing interest in mimicking the robust performance of animals in natural environments by incorporating compliant materials into the locomotory system. However, the mechanics of moving, highly conformable structures are particularly difficult to predict. This paper proposes a planar, extensible-link model for the soft-bodied tobacco hornworm caterpillar, Manduca sexta, to provide insight for biologists and engineers studying locomotion by highly deformable animals and caterpillar-like robots. Using inverse dynamics to process experimentally acquired point-tracking data, ground reaction forces and internal forces were determined for a crawling caterpillar. Computed ground reaction forces were compared to experimental data to validate the model. The results show that a system of linked extendable joints can faithfully describe the general form and magnitude of the contact forces produced by a crawling caterpillar. Furthermore, the model can be used to compute internal forces that cannot be measured experimentally. It is predicted that between different body segments in stance phase the body is mostly kept in tension and that compression only occurs during the swing phase when the prolegs release their grip. This finding supports a recently proposed mechanism for locomotion by soft animals in which the substrate transfers compressive forces from one part of the body to another (the environmental skeleton) thereby minimizing the need for hydrostatic stiffening. The model also provides a new means to characterize and test control strategies used in caterpillar crawling and soft robot locomotion.


Assuntos
Biomimética/métodos , Marcha/fisiologia , Locomoção/fisiologia , Manduca/fisiologia , Modelos Biológicos , Robótica/métodos , Animais , Simulação por Computador , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA