Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Pharmaceutics ; 16(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38399332

RESUMO

The use of platinum-based anticancer drugs, such as cisplatin, oxaliplatin, and carboplatin, is a common frontline option in cancer management, but they have debilitating side effects and can lead to drug resistance. Combination therapy with other chemotherapeutic agents, such as capecitabine and gemcitabine, has been explored. One approach to overcome these limitations is the modification of traditional Pt(II) drugs to obtain new molecules with an improved pharmacological profile, such as Pt(IV) prodrugs. The design, synthesis, and characterization of two novel Pt(IV) prodrugs based on oxaliplatin bearing the anticancer drugs gemcitabine or capecitabine in the axial positions have been reported. These complexes were able to dissociate into their constituents to promote cell death and induce apoptosis and cell cycle blockade in a representative colorectal cancer cell model. Specifically, the complex bearing gemcitabine resulted in being the most active on the HCT116 colorectal cancer cell line with an IC50 value of 0.49 ± 0.04. A pilot study on the encapsulation of these complexes in biocompatible PLGA-PEG nanoparticles is also included to confirm the retention of the pharmacological properties and cellular drug uptake, opening up to the possible delivery of the studied complexes through their nanoformulation.

2.
Biochem Pharmacol ; : 116078, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38402909

RESUMO

A drug Mechanism of Action (MoA) is a complex biological phenomenon that describes how a bioactive compound produces a pharmacological effect. The complete knowledge of MoA is fundamental to fully understanding the drug activity. Over the years, many experimental methods have been developed and a huge quantity of data has been produced. Nowadays, considering the increasing omics data availability and the improvement of the accessible computational resources, the study of a drug MoA is conducted by integrating experimental and bioinformatics approaches. The development of new in silico solutions for this type of analysis is continuously ongoing; herein, an updating review on such bioinformatic methods is presented. The methodologies cited are based on multi-omics data integration in biochemical networks and Machine Learning (ML). The multiple types of usable input data and the advantages and disadvantages of each method have been analyzed, with a focus on their applications. Three specific research areas (i.e. cancer drug development, antibiotics discovery, and drug repurposing) have been chosen for their importance in the drug discovery fields in which the study of drug MoA, through novel bioinformatics approaches, is particularly productive.

3.
Nanoscale ; 16(4): 1792-1806, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38175567

RESUMO

Graphene and bidimensional (2D) materials have been widely used in nerve conduits to boost peripheral nerve regeneration. Nevertheless, the experimental and commercial variability in graphene-based materials generates graphene forms with different structures and properties that can trigger entirely diverse biological responses from all the players involved in nerve repair. Herein, we focus on the graphene and tungsten disulfide (WS2) interaction with non-neuronal cell types involved in nerve tissue regeneration. We synthesize highly crystalline graphene and WS2 with scalable techniques such as thermal decomposition and chemical vapor deposition. The materials were able to trigger the activation of a neutrophil human model promoting Neutrophil Extracellular Traps (NETs) production, particularly under basal conditions, although neutrophils were not able to degrade graphene. Of note is that pristine graphene acts as a repellent for the NET adhesion, a beneficial property for nerve conduit long-term applications. Mesenchymal stem cells (MSCs) have been proposed as a promising strategy for nerve regeneration in combination with a conduit. Thus, the interaction of graphene with MSCs was also investigated, and reduced viability was observed only on specific graphene substrates. Overall, the results confirm the possibility of regulating the cell response by varying graphene properties and selecting the most suitable graphene forms.


Assuntos
Grafite , Células-Tronco Mesenquimais , Humanos , Grafite/química , Neutrófilos , Regeneração Nervosa
4.
Int J Bioprint ; 9(5): 763, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457943

RESUMO

Tendon and ligament injuries are relevant clinical problems in modern society, and the current medical approaches do not guarantee complete recovery of the physiological functionalities. Moreover, they present a non-negligible failure rate after surgery. Failures often occur at the enthesis, which is the area of tendons and ligaments insertion to bones. This area is highly anisotropic and composed of four distinct zones: tendon or ligament, non-mineralized fibrocartilage, mineralized fibrocartilage, and bone. The organization of these regions provides a gradient in mechanical properties, biochemical composition, cellular phenotype, and extracellular matrix organization. Tissue engineering represents an alternative to traditional medical approaches. This work presents a novel biofabrication approach for engineering the enthesis. Gradient-based scaffolds were fabricated by exploiting the combination of electrospinning and three-dimensional (3D) bioprinting technologies. Studies were conducted to evaluate scaffold biocompatibility by seeding bone marrow-derived mesenchymal stem cells (BM-MSCs). Then, the scaffold's ability to promote cellular adhesion, growth, proliferation, and differentiation in both tenogenic and osteogenic phenotypes was evaluated. Fabricated scaffolds were also morphologically and mechanically characterized, showing optimal properties comparable to literature data. The versatility and potentiality of this novel biofabrication approach were demonstrated by fabricating clinical-size 3D enthesis scaffolds. The mechanical characterization highlighted their behavior during a tensile test was comparable to tendons and ligaments in vivo.

5.
Dalton Trans ; 51(35): 13527-13539, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36000524

RESUMO

A novel gold(I) complex inspired by the known medicinal inorganic compounds auranofin and thimerosal, namely ethylthiosalicylate(triethylphosphine)gold(I) (AFETT hereafter), was synthesized and characterised and its structure was resolved through X-ray diffraction. The solution behavior of AFETT and its interactions with two biologically relevant proteins (i.e. human serum albumin and haemoglobin) and with a synthetic dodecapeptide reproducing the C-terminal portion of thioredoxin reductase were comparatively analyzed through 31P NMR and ESI-MS. Remarkable binding properties toward these biomolecules were disclosed. Moreover, the cytotoxic effects produced by AFETT on two ovarian cancer cell lines (A2780 and A2780 R) and one colorectal cancer cell line (HCT116) were analyzed and found to be strong and nearly superimposable to those of auranofin. Interestingly, for both compounds, the ability to induce downregulation of vimentin expression in A2780 R cells was evidenced. Despite its close similarity to auranofin, AFETT is reported to exhibit some peculiar and distinctive features such as a lower lipophilicity, an increased water solubility and a faster reactivity towards the selected target biomolecules. These differences might confer to AFETT significant pharmaceutical and therapeutic advantages over auranofin itself.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/química , Auranofina/química , Auranofina/farmacologia , Linhagem Celular Tumoral , Feminino , Ouro/química , Humanos
6.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613703

RESUMO

GPR17, a G protein-coupled receptor, is a pivotal regulator of myelination. Its endogenous ligands trigger receptor desensitization and downregulation allowing oligodendrocyte terminal maturation. In addition to its endogenous agonists, GPR17 could be promiscuously activated by pro-inflammatory oxysterols and chemokines released at demyelinating lesions. Herein, the chemokine receptors CXCR2 and CXCR4 were selected to perform both in silico modelling and in vitro experiments to establish their structural and functional interactions with GPR17. The relative propensity of GPR17 and CXCR2 or CXCR4 to form homo- and hetero-dimers was assessed by homology modelling and molecular dynamics (MD) simulations, and co-immunoprecipitation and immunoenzymatic assay. The interaction between chemokine receptors and GPR17 was investigated by determining receptor-mediated modulation of intracellular cyclic adenosine monophosphate (cAMP). Our data show the GPR17 association with CXCR2 or CXCR4 and the negative regulation of these interactions by CXCR agonists or antagonists. Moreover, GPR17 and CXCR2 heterodimers can functionally influence each other. In contrast, CXCR4 can influence GPR17 functionality, but not vice versa. According to MD simulations, all the dimers reached conformational stability and negative formation energy, confirming the experimental observations. The cross-talk between these receptors could play a role in the development of the neuroinflammatory milieu associated with demyelinating events.


Assuntos
Receptores de Quimiocinas , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/química , Transdução de Sinais/fisiologia , AMP Cíclico , Simulação de Dinâmica Molecular
7.
Front Pharmacol ; 12: 652121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841166

RESUMO

The development of GPCR (G-coupled protein receptor) allosteric modulators has attracted increasing interest in the last decades. The use of allosteric modulators in therapy offers several advantages with respect to orthosteric ones, as they can fine-tune the tissue responses to the endogenous agonist. Since the discovery of the first A1 adenosine receptor (AR) allosteric modulator in 1990, several efforts have been made to develop more potent molecules as well as allosteric modulators for all adenosine receptor subtypes. There are four subtypes of AR: A1, A2A, A2B, and A3. Positive allosteric modulators of the A1 AR have been proposed for the cure of pain. A3 positive allosteric modulators are thought to be beneficial during inflammatory processes. More recently, A2A and A2B AR allosteric modulators have also been disclosed. The A2B AR displays the lowest affinity for its endogenous ligand adenosine and is mainly activated as a consequence of tissue damage. The A2B AR activation has been found to play a crucial role in chronic obstructive pulmonary disease, in the protection of the heart from ischemic injury, and in the process of bone formation. In this context, allosteric modulators of the A2B AR may represent pharmacological tools useful to develop new therapeutic agents. Herein, we provide an up-to-date highlight of the recent findings and future perspectives in the field of orthosteric and allosteric A2B AR ligands. Furthermore, we compare the use of orthosteric ligands with positive and negative allosteric modulators for the management of different pathological conditions.

8.
J Inorg Biochem ; 218: 111387, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33721720

RESUMO

Two cationic ruthenium(II) 1,4,7-trithiacyclononane ([9]aneS3) complexes of curcumin (curcH) and bisdemethoxycurcumin (bdcurcH), namely [Ru(curc)(dmso-S)([9]aneS3)]Cl (1) and [Ru(bdcurc)(dmso-S)([9]aneS3)]Cl (2) were prepared from the [RuCl2(dmso-S)([9]-aneS3)] precursor and structurally characterized, both in solution and in the solid state by X-ray crystallography. The corresponding PTA complexes [Ru(curc)(PTA)([9]aneS3)]Cl (3) and [Ru(bdcurc)(PTA)([9]aneS3)]Cl (4) have been also synthesized and characterized (PTA = 1,3,5-triaza-7-phosphaadamantane). Bioinorganic studies relying on mass spectrometry were performed on complexes 1-4 to assess their interactions with the model protein lysozyme. Overall, a rather limited reactivity with lysozyme was highlighted accompanied by a modest cytotoxic potency against three representative cancer cell lines. The moderate pharmacological activity is likely connected to the relatively high stability of these complexes.


Assuntos
Alcanos/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Curcumina/química , Neoplasias/tratamento farmacológico , Rutênio/química , Compostos de Enxofre/química , Sobrevivência Celular , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Neoplasias/patologia , Células Tumorais Cultivadas
9.
J Enzyme Inhib Med Chem ; 36(1): 286-294, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33334192

RESUMO

Small-molecules acting as positive allosteric modulators (PAMs) of the A2B adenosine receptor (A2B AR) could potentially represent a novel therapeutic strategy for pathological conditions characterised by altered bone homeostasis, including osteoporosis. We investigated a library of compounds (4-13) exhibiting different degrees of chemical similarity with three indole derivatives (1-3), which have been recently identified by us as PAMs of the A2B AR able to promote mesenchymal stem cell differentiation and bone formation. Evaluation of mineralisation activity of 4-13 in the presence and in the absence of the agonist BAY60-6583 allowed the identification of lead compounds with therapeutic potential as anti-osteoporosis agents. Further biological characterisation of one of the most performing compounds, the benzofurane derivative 9, confirmed that such a molecule behaves as PAM of the A2B AR.


Assuntos
Indóis/farmacologia , Receptor A2B de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Indóis/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade
10.
Int J Mol Sci ; 21(20)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33081024

RESUMO

Glioblastoma is an aggressive, fast-growing brain tumor influenced by the composition of the tumor microenvironment (TME) in which mesenchymal stromal cell (MSCs) play a pivotal role. Adenosine (ADO), a purinergic signal molecule, can reach up to high micromolar concentrations in TME. The activity of specific adenosine receptor subtypes on glioma cells has been widely explored, as have the effects of MSCs on tumor progression. However, the effects of high levels of ADO on glioma aggressive traits are still unclear as is its role in cancer cells-MSC cross-talk. Herein, we first studied the role of extracellular Adenosine (ADO) on isolated human U343MG cells as a glioblastoma cellular model, finding that at high concentrations it was able to prompt the gene expression of Snail and ZEB1, which regulate the epithelial-mesenchymal transition (EMT) process, even if a complete transition was not reached. These effects were mediated by the induction of ERK1/2 phosphorylation. Additionally, ADO affected isolated bone marrow derived MSCs (BM-MSCs) by modifying the pattern of secreted inflammatory cytokines. Then, the conditioned medium (CM) of BM-MSCs stimulated with ADO and a co-culture system were used to investigate the role of extracellular ADO in GBM-MSC cross-talk. The CM promoted the increase of glioma motility and induced a partial phenotypic change of glioblastoma cells. These effects were maintained when U343MG cells and BM-MSCs were co-cultured. In conclusion, ADO may affect glioma biology directly and through the modulation of the paracrine factors released by MSCs overall promoting a more aggressive phenotype. These results point out the importance to deeply investigate the role of extracellular soluble factors in the glioma cross-talk with other cell types of the TME to better understand its pathological mechanisms.


Assuntos
Adenosina/farmacologia , Neoplasias Encefálicas/patologia , Espaço Extracelular/química , Glioblastoma/patologia , Células-Tronco Mesenquimais/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Invasividade Neoplásica , Fosforilação/efeitos dos fármacos
11.
Biochim Biophys Acta Mol Cell Res ; 1867(2): 118614, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31760089

RESUMO

We address the contribution of kinase domain structure and catalytic activity to membrane trafficking of TrkA receptor tyrosine kinase. We conduct a systematic comparison between TrkA-wt, an ATP-binding defective mutant (TrkA-K544N) and other mutants displaying separate functional impairments of phosphorylation, ubiquitination, or recruitment of intracellular partners. We find that only K544N mutation endows TrkA with restricted membrane mobility and a substantial increase of cell surface pool already in the absence of ligand stimulation. This mutation is predicted to drive a structural destabilization of the αC helix in the N-lobe by molecular dynamics simulations, and enhances interactions with elements of the actin cytoskeleton. On the other hand, a different TrkA membrane immobilization is selectively observed after NGF stimulation, requires both phosphorylation and ubiquitination to occur, and is most probably related to the signaling abilities displayed by the wt but not mutated receptors. In conclusion, our results allow to distinguish two different TrkA membrane immobilization modes and demonstrate that not all kinase-inactive mutants display identical membrane trafficking.


Assuntos
Receptor trkA/metabolismo , Citoesqueleto de Actina/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Fator de Crescimento Neural/farmacologia , Fosforilação/efeitos dos fármacos , Conformação Proteica em alfa-Hélice , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transporte Proteico , Receptor trkA/química , Receptor trkA/genética , Ubiquitinação/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Biochim Biophys Acta Mol Cell Res ; 1866(5): 737-749, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30703414

RESUMO

The osteoblast generation from Mesenchymal stem cells (MSCs) is tightly coordinated by transcriptional networks and signalling pathways that control gene expression and protein stability of osteogenic "master transcription factors". Among these pathways, a great attention has been focused on p53 and its physiological negative regulator, the E3 ligase Murine double minute 2 (Mdm2). Nevertheless, the signalling that regulates Mdm2-p53 axis in osteoblasts remain to be elucidated, also considering that Mdm2 possesses numerous p53-independent activities and interacts with additional proteins. Herein, the effects of Mdm2 modulation on MSC differentiation were examined by the use of short- and long-lasting inhibitors of the Mdm2-p53 complex. The long-lasting Mdm2-p53 dissociation was demonstrated to enhance the MSC differentiation into osteoblasts. The increase of Mdm2 levels promoted its association to G protein-coupled receptors kinase (GRK) 2, one of the most relevant kinases involved in the desensitization of G protein-coupled receptors (GPCRs). In turn, the long-lasting Mdm2-p53 dissociation decreased GRK2 levels and favoured the functionality of A2B Adenosine Receptors (A2BARs), a GPCR dictating MSC fate. EB148 facilitated cAMP accumulation, and mediated a sustained activation of extracellular signal-regulated kinases (ERKs) and cAMP response element-binding protein (CREB). Such pro-osteogenic effects were not detectable by using the reversible Mdm2-p53 complex inhibitor, suggesting the time course of Mdm2-p53 dissociation may impact on intracellular proteins involved in cell differentiation fate. These results suggest that the long-lasting Mdm2 binding plays a key role in the mobilization of intracellular proteins that regulate the final biological outcome of MSCs.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Dipeptídeos/farmacologia , Indóis/farmacologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Receptor A2B de Adenosina/metabolismo
13.
Bioorg Med Chem ; 26(22): 5885-5895, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30415894

RESUMO

The expression levels and the subcellular localization of adenosine receptors (ARs) are affected in several pathological conditions as a consequence of changes in adenosine release and metabolism. In this respect, labelled probes able to monitor the AR expression could be a useful tool to investigate different pathological conditions. Herein, novel ligands for ARs, bearing the fluorescent 7-nitrobenzofurazan (NBD) group linked to the N1 (1,2) or N10 (3,4) nitrogen of a triazinobenzimidazole scaffold, were synthesized. The compounds were biologically evaluated as fluorescent probes for labelling A1 and A2B AR subtypes in bone marrow-derived mesenchymal stem cells (BM-MSCs) that express both receptor subtypes. The binding affinity of the synthetized compounds towards the different AR subtypes was determined. The probe 3 revealed a higher affinity to A1 and A2B ARs, showing interesting spectroscopic properties, and it was selected as the most suitable candidate to label both AR subtypes in undifferentiated MSCs. Fluorescence confocal microscopy showed that compound 3 significantly labelled ARs on cell membranes and the fluorescence signal was decreased by the cell pre-incubation with the A1 AR and A2B AR selective agonists, R-PIA and BAY 60-6583, respectively, thus confirming the specificity of the obtained signal. In conclusion, compound 3 could represent a useful tool to investigate the expression pattern of both A1 and A2B ARs in different pathological and physiological processes. Furthermore, these results provide an important basis for the design of new and more selective derivatives able to monitor the expression and localization of each different ARs in several tissues and living cells.


Assuntos
Benzimidazóis/farmacologia , Corantes Fluorescentes/farmacologia , Receptor A1 de Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Triazinas/farmacologia , Benzimidazóis/síntese química , Benzimidazóis/química , Células Cultivadas , Relação Dose-Resposta a Droga , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Microscopia Confocal , Estrutura Molecular , Receptor A1 de Adenosina/química , Receptor A2B de Adenosina/química , Relação Estrutura-Atividade , Triazinas/síntese química , Triazinas/química
14.
Medchemcomm ; 9(1): 81-86, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108902

RESUMO

Three A3 adenosine receptor (AR) antagonists (1-3) selected from 4-acylamino-6-alkyloxy-2-alkylthiopyrimidines previously investigated by us were modified by inserting a methyl group on their ether or thioether side chains. These compounds gave us the chance to evaluate whether their higher lipophilicity, reduced conformational freedom and chirality might improve the potency towards the A3 AR. Racemic mixtures of 1-3 were resolved using chiral HPLC methods and the absolute configurations of the enantiomers were assigned by chiroptical spectroscopy and density functional theory calculations. We measured the affinity for human A1, A2A, A2B and A3 ARs of the racemic mixtures and the pure enantiomers of 1-3 by radioligand competition binding experiments. Cell-based assays of the most potent enantiomers confirmed their A3 AR antagonist profiles. Our research led to the identification of (S)-1 with high potency (0.5 nM) and selectivity as an A3 AR antagonist. Moreover we built a docking-model useful to design new pyrimidine derivatives.

15.
ACS Chem Neurosci ; 9(1): 85-99, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28368610

RESUMO

Glioblastoma (GBM) is characterized by a poor response to conventional chemotherapeutic agents, attributed to the insurgence of drug resistance mechanisms and to the presence of a subpopulation of glioma stem cells (GSCs). GBM cells and GSCs present, among others, an overexpression of antiapoptotic proteins and an inhibition of pro-apoptotic ones, which help to escape apoptosis. Among pro-apoptotic inducers, the Bcl-2 family protein Bax has recently emerged as a promising new target in cancer therapy along with first BAX activators (BAM7, Compound 106, and SMBA1). Herein, a derivative of BAM-7, named BTC-8, was employed to explore the effects of Bax activation in different human GBM cells and in their stem cell subpopulation. BTC-8 inhibited GBM cell proliferation, arrested the cell cycle, and induced apoptosis through the induction of mitochondrial membrane permeabilization. Most importantly, BTC-8 blocked proliferation and self-renewal of GSCs and induced their apoptosis. Notably, BTC-8 was demonstrated to sensitize both GBM cells and GSCs to the alkylating agent Temozolomide. Overall, our findings shed light on the effects and the relative molecular mechanisms related to Bax activation in GBM, and they suggest Bax-targeting compounds as promising therapeutic tools against the GSC reservoir.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Quimioterapia Combinada , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Hidrazonas/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Pirazóis/farmacologia , Temozolomida
16.
J Med Chem ; 60(17): 7447-7458, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28787156

RESUMO

Tyrosine kinase inhibitors (TKIs) of the EGF receptor (EGFR) have provided a significant improvement in the disease outcome of nonsmall cell lung cancer (NSCLC). Unfortunately, resistance to these agents frequently occurs, and it is often related to the activation of the Hedgehog (Hh) and MET signaling cascades driving the epithelial-to-mesenchymal transition (EMT). Because the concomitant inhibition of both Hh and MET pathways restores the sensitivity to anti-EGFR drugs, here we aimed at discovering the first compounds that block simultaneously MET and SMO. By using an "in silico drug repurposing" approach and by validating our predictions both in vitro and in vivo, we identified a set of compounds with the desired dual inhibitory activity and enhanced antiproliferative activity on EGFR TKI-resistant NSCLC. The identification of the known MET TKIs, glesatinib and foretinib, as negative modulators of the Hh pathway, widens their application in the context of NSCLC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Receptor Smoothened/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Reposicionamento de Medicamentos , Receptores ErbB/metabolismo , Feminino , Células HEK293 , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptor Smoothened/metabolismo
17.
Mol Cell Biol ; 37(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28137910

RESUMO

In the early phase of bone damage, low concentrations of the cytokine tumor necrosis factor alpha (TNF-α) favor osteoblast differentiation. In contrast, chronic high doses of the same cytokine contribute to bone loss, demonstrating opposite effects depending on its concentration and on the time of exposure. In the bone microenvironment, TNF-α modulates the expression/function of different G protein-coupled receptors (GPCRs) and of their regulatory proteins, GPCR-regulated kinases (GRKs), thus dictating their final biological outcome in controlling bone anabolic processes. Here, the effects of TNF-α were investigated on the expression/responsiveness of the A2B adenosine receptor (A2BAR), a Gs-coupled receptor that promotes mesenchymal stem cell (MSC) differentiation into osteoblasts. Low TNF-α concentrations exerted a prodifferentiating effect on MSCs, pushing them toward an osteoblast phenotype. By regulating GRK2 turnover and expression, the cytokine impaired A2BAR desensitization, accelerating receptor-mediated osteoblast differentiation. These data supported the anabolic effect of TNF-α submaximal concentration and demonstrated that the cytokine regulates GPCR responses by interfering with the receptor desensitization machinery, thereby enhancing the anabolic responses evoked by A2BAR ligands. Overall, these results indicated that GPCR desensitization plays a pivotal role in osteogenesis and that its manipulation is an effective strategy to favor bone remodeling.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Osteogênese , Receptor A2B de Adenosina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Agonistas do Receptor A2 de Adenosina/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Humanos , Cinética , Modelos Biológicos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
18.
Chem Biol Drug Des ; 88(5): 724-729, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27282729

RESUMO

Three 4-amino-6-alkyloxy-2-alkylthiopyrimidine derivatives (4-6) were investigated as potential non-nucleoside agonists at human adenosine receptors (ARs). When tested in competition binding experiments, these compounds exhibited low micromolar affinity (Ki values comprised between 1.2 and 1.9 µm) for the A1 AR and no appreciable affinity for the A2A and A3 ARs. Evaluation of their efficacy profiles by measurement of intracellular cAMP levels revealed that 4 and 5 behave as non-nucleoside agonists of the A1 AR with EC50 values of 0.47 and 0.87 µm, respectively. No clear concentration-response curves could be instead obtained for 6, probably because this compound modulates one or more additional targets, thus masking the putative effects exerted by its activation of A1 AR. The three compounds were not able to modulate A2B AR-mediated cAMP accumulation induced by the non-selective AR agonist NECA, thus demonstrating no affinity toward this receptor.


Assuntos
Agonistas do Receptor A1 de Adenosina/química , Pirimidinas/química , Receptor A1 de Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina/síntese química , Agonistas do Receptor A1 de Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Humanos , Ligação Proteica , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pirimidinas/síntese química , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Receptor A1 de Adenosina/química , Receptor A1 de Adenosina/genética , Transdução de Sinais/efeitos dos fármacos
19.
Nucl Med Biol ; 43(5): 309-17, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27150034

RESUMO

INTRODUCTION: A2B adenosine receptors (ARs) are commonly defined as "danger" sensors because they are triggered during cell injury when the endogenous molecule, adenosine, increases rapidly. These receptors, together with the other receptor subtypes (A1, A2A and A3), exert a wide variety of immunomodulating and (cyto)protective effects, thus representing a pivotal therapeutic target for different pathologies including diabetes, tumors, cardiovascular diseases, pulmonary fibrosis and others. The limited availability of potent and selective ligands for A2B ARs has prevented this receptor to emerge both as therapeutic and diagnostic target. METHODS: Recently, a new class of potent A2B ARs antagonists was developed featuring the triazinobenzimidazole scaffold. Starting from this chemotype, we synthesized a new radiotracer, [(11)C]-4 (1-[(11)C]methyl-3-phenyl triazino[4,3-a]benzimidazol-4(1H)-one), and investigated the pharmacokinetics of this compound in vivo to define its potential use in the imaging of A2B AR with positron emission tomography. RESULTS: [(11)C]-4 showed a very high chemical and blood stability. Results of in vivo and ex vivo experiments underlined the ability of this molecule to bind the A2B AR and correlated with the A2B AR protein and gene expression data. CONCLUSIONS: Although further studies are necessary, these data suggest that [(11)C]-4 may represent a good lead compound for the development of novel selective and potent A2B AR radiotracers, and a new option for the clinical investigation of several pathophysiological processes and chronic diseases.


Assuntos
Benzimidazóis/síntese química , Isótopos de Carbono , Tomografia por Emissão de Pósitrons/métodos , Receptor A2B de Adenosina/metabolismo , Triazinas/síntese química , Animais , Benzimidazóis/química , Benzimidazóis/metabolismo , Benzimidazóis/farmacocinética , Células CHO , Cricetinae , Cricetulus , Regulação da Expressão Gênica , Humanos , Marcação por Isótopo , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Radioquímica , Ratos , Receptor A2B de Adenosina/genética , Relação Estrutura-Atividade , Distribuição Tecidual , Triazinas/química , Triazinas/metabolismo , Triazinas/farmacocinética
20.
Cell Signal ; 28(6): 631-42, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26971834

RESUMO

Recent data and publications suggest a promiscuous behaviour for GPR17, a class-A GPCR operated by different classes of ligands, such as uracil nucleotides, cysteinyl-leukotrienes and oxysterols. This observation, together with the ability of several class-A GPCRs to form homo- and hetero-dimers, is likely to unveil new pathophysiological roles and novel emerging pharmacological properties for some of these GPCRs, including GPR17. This receptor shares structural, phylogenetic and functional properties with some chemokine receptors, CXCRs. Both GPR17 and CXCR2 are operated by oxysterols, and both GPR17 and CXCR ligands have been demonstrated to have a role in orchestrating inflammatory responses and oligodendrocyte precursor cell differentiation to myelinating cells in acute and chronic diseases of the central nervous system. Here, by combining in silico modelling data with in vitro validation in (i) a classical reference pharmacological assay for GPCR activity and (ii) a model of maturation of primary oligodendrocyte precursor cells, we demonstrate that GPR17 can be activated by SDF-1, a ligand of chemokine receptors CXCR4 and CXCR7, and investigate the underlying molecular recognition mechanism. We also demonstrate that cangrelor, a GPR17 orthosteric antagonist, can block the SDF-1-mediated activation of GPR17 in a concentration-dependent manner. The ability of GPR17 to respond to different classes of GPCR ligands suggests that this receptor modifies its function depending on the extracellular mileu changes occurring under specific pathophysiological conditions and advocates it as a strategic target for neurodegenerative diseases with an inflammatory/immune component.


Assuntos
Quimiocina CXCL12/química , Receptores Acoplados a Proteínas G/química , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Animais , Células Cultivadas , Quimiocina CXCL12/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA