Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol Drugs Drug Resist ; 8(3): 475-487, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30399513

RESUMO

Previous work from our group showed that tamoxifen, an oral drug that has been in use for the treatment of breast cancer for over 40 years, is active both in vitro and in vivo against several species of Leishmania, the etiological agent of leishmaniasis. Using a combination of metabolic labeling with [3H]-sphingosine and myo-[3H]-inositol, alkaline hydrolysis, HPTLC fractionations and mass spectrometry analyses, we observed a perturbation in the metabolism of inositolphosphorylceramides (IPCs) and phosphatidylinositols (PIs) after treatment of L. amazonensis promastigotes with tamoxifen, with a significant reduction in the biosynthesis of the major IPCs (composed of d16:1/18:0-IPC, t16:0/C18:0-IPC, d18:1/18:0-IPC and t16:0/20:0-IPC) and PIs (sn-1-O-(C18:0)alkyl -2-O-(C18:1)acylglycerol-3-HPO4-inositol and sn-1-O-(C18:0)acyl-2-O-(C18:1)acylglycerol-3-HPO4-inositol) species. Substrate saturation kinetics of myo-inositol uptake analyses indicated that inhibition of inositol transport or availability were not the main reasons for the reduced biosynthesis of IPC and PI observed in tamoxifen treated parasites. An in vitro enzymatic assay was used to show that tamoxifen was able to inhibit the Leishmania IPC synthase with an IC50 value of 8.48 µM (95% CI 7.68-9.37), suggesting that this enzyme is most likely one of the targets for this compound in the parasites.


Assuntos
Vias Biossintéticas/efeitos dos fármacos , Glicoesfingolipídeos/biossíntese , Leishmania/efeitos dos fármacos , Tamoxifeno/farmacologia , Glicoesfingolipídeos/metabolismo , Hexosiltransferases/efeitos dos fármacos , Hexosiltransferases/metabolismo , Concentração Inibidora 50 , Inositol/metabolismo , Leishmania/fisiologia , Leishmania mexicana/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Fosfatidilinositóis/metabolismo
2.
Trop Med Int Health ; 23(9): 936-942, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29924907

RESUMO

OBJECTIVES: There is a clear need for new strategies of leishmaniasis treatment. This work was conducted to evaluate the efficacy of the co-administration of tamoxifen and meglumine antimoniate (SbV ) in a phase II pilot clinical trial in localised cutaneous leishmaniasis patients. METHODS: A randomised controlled pilot clinical trial was conducted to evaluate the efficacy and safety of oral (40 mg/day for 20 days) or topical tamoxifen (0.1% tamoxifen citrate for 20 days) combined with meglumine antimoniate (20 mg SbV /kg/day for 20 days) vs. a standard SbV protocol (20 mg/kg/day for 20 days) for the treatment of cutaneous leishmaniasis. Primary outcome was complete epithelisation of the lesion 6 months after the end of treatment. Secondary outcomes were lesion healing 2 months after the end of treatment and frequency and severity of adverse events. RESULTS: A total of 38 subjects were included in the trial, 15 were treated with standard SbV and 23 with the combination of tamoxifen and SbV . Of the patients treated with the co-administration scheme, 12 received tamoxifen orally and 11 were treated with topical tamoxifen. Tamoxifen administered by the oral or topical routes was well tolerated. Cure rates 6 months after the end of treatment per intention to treat were 40% in the group treated with the standard SbV scheme, and 36.4% and 58%, respectively, for groups treated with SbV plus topical or oral tamoxifen. CONCLUSIONS: In the doses and schemes used in this study, co-administration of oral tamoxifen and SbV resulted in higher cure rates in comparison with the standard scheme of treatment, although not to statistically significant levels.


Assuntos
Antiprotozoários/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Antimoniato de Meglumina/uso terapêutico , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Tamoxifeno/uso terapêutico , Administração Oral , Administração Tópica , Adulto , Antiprotozoários/administração & dosagem , Quimioterapia Combinada , Feminino , Humanos , Masculino , Antimoniato de Meglumina/administração & dosagem , Pessoa de Meia-Idade , Projetos Piloto , Moduladores Seletivos de Receptor Estrogênico/administração & dosagem , Tamoxifeno/administração & dosagem , Resultado do Tratamento , Adulto Jovem
3.
Int J Parasitol Drugs Drug Resist ; 5(3): 77-83, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26150922

RESUMO

Tamoxifen, an antineoplastic agent, is active in vitro and in vivo against the parasitic protozoa Leishmania. As part of our efforts to unravel this drug's mechanisms of action against the parasite and understand how resistance could arise, we tried to select tamoxifen-resistant Leishmania amazonensis. Three different strategies to generate tamoxifen resistant mutants were used: stepwise increase in drug concentration applied to promastigote cultures, chemical mutagenesis followed by drug selection and treatment of infected mice followed by selection of amastigotes. For amastigote selection, we employed a method with direct plating of parasites recovered from lesions into semi-solid media. Tamoxifen resistant parasites were not rescued by any of these methods. Miltefosine was used as a control in selection experiments and both stepwise selection and chemical mutagenesis allowed successful isolation of miltefosine resistant mutants. These findings are consistent with a multi-target mode of action to explain tamoxifen's leishmanicidal properties. Considering that drug resistance is a major concern in anti-parasitic chemotherapy, these findings support the proposition of using tamoxifen as a partner in drug combination schemes for the treatment of leishmaniasis.


Assuntos
Resistência a Medicamentos , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Tamoxifeno/uso terapêutico , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fosforilcolina/análogos & derivados , Fosforilcolina/uso terapêutico , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Tamoxifeno/administração & dosagem , Tamoxifeno/farmacologia
4.
PLoS Negl Trop Dis ; 8(5): e2842, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24810565

RESUMO

BACKGROUND: The treatment of leishmaniasis relies mostly on parenteral drugs with potentially serious adverse effects. Additionally, parasite resistance in the treatment of leishmaniasis has been demonstrated for the majority of drugs available, making the search for more effective and less toxic drugs and treatment regimens a priority for the control of leishmaniasis. The aims of this study were to evaluate the antileishmanial activity of raloxifene in vitro and in vivo and to investigate its mechanism of action against Leishmania amazonensis. METHODOLOGY/PRINCIPAL FINDINGS: Raloxifene was shown to possess antileishmanial activity in vitro against several species with EC50 values ranging from 30.2 to 38.0 µM against promastigotes and from 8.8 to 16.2 µM against intracellular amastigotes. Raloxifene's mechanism of action was investigated through transmission electron microscopy and labeling with propidium iodide, DiSBAC2(3), rhodamine 123 and monodansylcadaverine. Microscopic examinations showed that raloxifene treated parasites displayed autophagosomes and mitochondrial damage while the plasma membrane remained continuous. Nonetheless, plasma membrane potential was rapidly altered upon raloxifene treatment with initial hyperpolarization followed by depolarization. Loss of mitochondrial membrane potential was also verified. Treatment of L. amazonensis-infected BALB/c mice with raloxifene led to significant decrease in lesion size and parasite burden. CONCLUSIONS/SIGNIFICANCE: The results of this work extend the investigation of selective estrogen receptor modulators as potential candidates for leishmaniasis treatment. The antileishmanial activity of raloxifene was demonstrated in vitro and in vivo. Raloxifene produces functional disorder on the plasma membrane of L. amazonensis promastigotes and leads to functional and morphological disruption of mitochondria, which culminate in cell death.


Assuntos
Moduladores de Receptor Estrogênico/farmacologia , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/parasitologia , Cloridrato de Raloxifeno/farmacologia , Tripanossomicidas/farmacologia , Animais , Membrana Celular/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Vacúolos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA