Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 1312, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446861

RESUMO

Plasma membrane (PM) H+-ATPases are the electrogenic proton pumps that export H+ from plant and fungal cells to acidify the surroundings and generate a membrane potential. Plant PM H+-ATPases are equipped with a C­terminal autoinhibitory regulatory (R) domain of about 100 amino acid residues, which could not be identified in the PM H+-ATPases of green algae but appeared fully developed in immediate streptophyte algal predecessors of land plants. To explore the physiological significance of this domain, we created in vivo C-terminal truncations of autoinhibited PM H+­ATPase2 (AHA2), one of the two major isoforms in the land plant Arabidopsis thaliana. As more residues were deleted, the mutant plants became progressively more efficient in proton extrusion, concomitant with increased expansion growth and nutrient uptake. However, as the hyperactivated AHA2 also contributed to stomatal pore opening, which provides an exit pathway for water and an entrance pathway for pests, the mutant plants were more susceptible to biotic and abiotic stresses, pathogen invasion and water loss, respectively. Taken together, our results demonstrate that pump regulation through the R domain is crucial for land plant fitness and by controlling growth and nutrient uptake might have been necessary already for the successful water-to-land transition of plants.


Assuntos
Arabidopsis , Bombas de Próton , Bombas de Próton/genética , Transporte Biológico , Membrana Celular , Prótons , Água , Arabidopsis/genética , Adenosina Trifosfatases
2.
Plant Direct ; 5(12): e368, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938941

RESUMO

pH homeostasis in the chloroplast is crucial for the control of photosynthesis and other metabolic processes in plants. Recently, nuclear-encoded Day-Length-dependent Delayed Greening1 (DLDG1) and Fluctuating-Light Acclimation Protein1 (FLAP1) that are required for the light-inducible optimization of plastidial pH in Arabidopsis thaliana were identified. DLDG1 and FLAP1 homologs are specifically conserved in oxygenic phototrophs, and a DLDG1 homolog, Ycf10, is encoded in the chloroplast genome in plant cells. However, the function of Ycf10 and its physiological significance are unknown. To address this, we constructed ycf10 tobacco Nicotiana tabacum mutants and characterized their phenotypes. The ycf10 tobacco mutants grown under continuous-light conditions showed a pale-green phenotype only in developing leaves, and it was suppressed in short-day conditions. The ycf10 mutants also induced excessive non-photochemical quenching (NPQ) compared with those in the wild-type at the induction stage of photosynthesis. These phenotypes resemble those of Arabidopsis dldg1 mutants, suggesting that they have similar functions. However, there are distinct differences between the two mutant phenotypes: The highly induced NPQ in tobacco ycf10 and the Arabidopsis dldg1 mutants are diminished and enhanced, respectively, with increasing duration of the fluctuating actinic-light illumination. Ycf10 and DLDG1 were previously shown to localize in chloroplast envelope-membranes, suggesting that Ycf10 and DLDG1 differentially control H+ exchange across these membranes in a light-dependent manner to control photosynthesis.

3.
Photosynth Res ; 139(1-3): 359-365, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29916043

RESUMO

The proton motive force (PMF) across the chloroplast thylakoid membrane that is generated by electron transport during photosynthesis is the driving force for ATP synthesis in plants. The PMF mainly arises from the oxidation of water in photosystem II and from electron transfer within the cytochrome b6f complex. There are two electron transfer pathways related to PMF formation: linear electron flow and cyclic electron flow. Proton gradient regulation 5 (PGR5) is a major component of the cyclic electron flow pathway, and the Arabidopsis pgr5 mutant shows a substantial reduction in the PMF. How the PGR5-dependent cyclic electron flow contributes to ATP synthesis has not, however, been fully delineated. In this study, we monitored in vivo ATP levels in Arabidopsis chloroplasts in real time using a genetically encoded bioluminescence-based ATP indicator, Nano-lantern(ATP1). The increase in ATP in the chloroplast stroma of pgr5 leaves upon illumination with actinic light was significantly slower than in wild type, and the decrease in ATP levels when this illumination stopped was significantly faster in pgr5 leaves than in wild type. These results indicated that PGR5-dependent cyclic electron flow around photosystem I helps to sustain the rate of ATP synthesis, which is important for growth under fluctuating light conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/genética , Transporte de Elétrons/genética , Transporte de Elétrons/fisiologia , Fotossíntese/genética , Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo
4.
Int J Biol Macromol ; 66: 1-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24521568

RESUMO

The aim of this study was to investigate anti-inflammatory activity of 4-hydroxybenzyl-chitooligomers (HB-COS) in Chang liver cells stimulated by a cytokine mixture. It was revealed that HB-COS decreased the level of nitric oxide and prostaglandin E2 (PGE2) production by diminishing the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) without significant cytotoxicity. Moreover, HB-COS exerted inhibitory effects on the production of pro-inflammatory mediator (interleukin-6) in Chang liver cells. Notably, HB-COS exhibited anti-inflammatory activities via blocking degradation of inhibitory kappa B alpha (IκB-α), translocation of nuclear factor kappa B (NF-κB), and phosphorylation of mitogen-activated protein kinases (MAPKs) in a dose-dependent manner. Collectively, these findings indicated that HB-COS possessed potential anti-inflammatory effects in Chang liver cells, and could be a useful therapeutic agent for the treatment of hepatic inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Humanos , Proteínas I-kappa B/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Fígado/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA