Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Nature ; 623(7988): 820-827, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938771

RESUMO

The majority of oncogenic drivers are intracellular proteins, constraining their immunotherapeutic targeting to mutated peptides (neoantigens) presented by individual human leukocyte antigen (HLA) allotypes1. However, most cancers have a modest mutational burden that is insufficient for generating responses using neoantigen-based therapies2,3. Neuroblastoma is a paediatric cancer that harbours few mutations and is instead driven by epigenetically deregulated transcriptional networks4. Here we show that the neuroblastoma immunopeptidome is enriched with peptides derived from proteins essential for tumorigenesis. We focused on targeting the unmutated peptide QYNPIRTTF discovered on HLA-A*24:02, which is derived from the neuroblastoma-dependency gene and master transcriptional regulator PHOX2B. To target QYNPIRTTF, we developed peptide-centric chimeric antigen receptors (PC-CARs) through a counter panning strategy using predicted potentially cross-reactive peptides. We further proposed that PC-CARs can recognize peptides on additional HLA allotypes when presenting a similar overall molecular surface. Informed by our computational modelling results, we show that PHOX2B PC-CARs also recognize QYNPIRTTF presented by HLA-A*23:01, the most common non-A2 allele in people with African ancestry. Finally, we demonstrate potent and specific killing of neuroblastoma cells expressing these HLAs in vitro and complete tumour regression in mice. These data suggest that PC-CARs have the potential to expand the pool of immunotherapeutic targets to include non-immunogenic intracellular oncoproteins and allow targeting through additional HLA allotypes in a clinical setting.


Assuntos
Antígenos de Neoplasias , Neuroblastoma , Proteínas Oncogênicas , Peptídeos , Receptores de Antígenos Quiméricos , Animais , Humanos , Camundongos , África/etnologia , Alelos , Sequência de Aminoácidos , Carcinogênese , Reações Cruzadas , Antígenos HLA-A/química , Antígenos HLA-A/imunologia , Neuroblastoma/genética , Neuroblastoma/imunologia , Neuroblastoma/terapia , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/imunologia , Peptídeos/antagonistas & inibidores , Peptídeos/química , Peptídeos/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico
3.
ACS Chem Biol ; 18(2): 431-440, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36724382

RESUMO

Cyclin-dependent kinases (CDKs) are key mediators of cell proliferation and have been a subject of oncology drug discovery efforts for over two decades. Several CDK and activator cyclin family members have been implicated in regulating the cell division cycle. While it is thought that there are canonical CDK-cyclin pairing preferences, the extent of selectivity is unclear, and increasing evidence suggests that the cell-cycle CDKs can be activated by a pool of available cyclins. The molecular details of CDK-cyclin specificity are not completely understood despite their importance for understanding cancer cell cycles and for pharmacological inhibition of cancer proliferation. We report here a biolayer interferometry assay that allows for facile quantification of CDK binding interactions with their cyclin activators. We applied this assay to measure the impact of Cdk2 inhibitors on Cyclin A (CycA) association and dissociation kinetics. We found that Type I inhibitors increase the affinity between Cdk2 and CycA by virtue of a slowed cyclin dissociation rate. In contrast, Type II inhibitors and other small-molecule Cdk2 binders have distinct effects on the CycA association and dissociation processes to decrease affinity. We propose that the differential impact of small molecules on the cyclin binding kinetics arises from the plasticity of the Cdk2 active site as the kinase transitions between active, intermediate, and inactive states.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Quinases Ciclina-Dependentes , Quinases Ciclina-Dependentes/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases relacionadas a CDC2 e CDC28/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Ciclinas/metabolismo , Fosforilação , Quinase 4 Dependente de Ciclina/metabolismo
4.
Structure ; 30(9): 1340-1353.e3, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35716663

RESUMO

The retinoblastoma protein (Rb) and its homologs p107 and p130 are critical regulators of gene expression during the cell cycle and are commonly inactivated in cancer. Rb proteins use their "pocket domain" to bind an LxCxE sequence motif in other proteins, many of which function with Rb proteins to co-regulate transcription. Here, we present binding data and crystal structures of the p107 pocket domain in complex with LxCxE peptides from the transcriptional co-repressor proteins HDAC1, ARID4A, and EID1. Our results explain why Rb and p107 have weaker affinity for cellular LxCxE proteins compared with the E7 protein from human papillomavirus, which has been used as the primary model for understanding LxCxE motif interactions. Our structural and mutagenesis data also identify and explain differences in Rb and p107 affinities for some LxCxE-containing sequences. Our study provides new insights into how Rb proteins bind their cell partners with varying affinity and specificity.


Assuntos
Proteínas Repressoras , Proteína do Retinoblastoma , Ciclo Celular , Humanos , Proteínas Repressoras/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Proteína p130 Retinoblastoma-Like/metabolismo
5.
Nat Commun ; 13(1): 526, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082292

RESUMO

The chromatin architecture in promoters is thought to regulate gene expression, but it remains uncertain how most transcription factors (TFs) impact nucleosome position. The MuvB TF complex regulates cell-cycle dependent gene-expression and is critical for differentiation and proliferation during development and cancer. MuvB can both positively and negatively regulate expression, but the structure of MuvB and its biochemical function are poorly understood. Here we determine the overall architecture of MuvB assembly and the crystal structure of a subcomplex critical for MuvB function in gene repression. We find that the MuvB subunits LIN9 and LIN37 function as scaffolding proteins that arrange the other subunits LIN52, LIN54 and RBAP48 for TF, DNA, and histone binding, respectively. Biochemical and structural data demonstrate that MuvB binds nucleosomes through an interface that is distinct from LIN54-DNA consensus site recognition and that MuvB increases nucleosome occupancy in a reconstituted promoter. We find in arrested cells that MuvB primarily associates with a tightly positioned +1 nucleosome near the transcription start site (TSS) of MuvB-regulated genes. These results support a model that MuvB binds and stabilizes nucleosomes just downstream of the TSS on its target promoters to repress gene expression.


Assuntos
Genes cdc , Nucleossomos/metabolismo , Ligação Proteica , Sítio de Iniciação de Transcrição , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Cromatina , DNA/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
6.
Nature ; 599(7885): 477-484, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34732890

RESUMO

The majority of oncogenic drivers are intracellular proteins, thus constraining their immunotherapeutic targeting to mutated peptides (neoantigens) presented by individual human leukocyte antigen (HLA) allotypes1. However, most cancers have a modest mutational burden that is insufficient to generate responses using neoantigen-based therapies2,3. Neuroblastoma is a paediatric cancer that harbours few mutations and is instead driven by epigenetically deregulated transcriptional networks4. Here we show that the neuroblastoma immunopeptidome is enriched with peptides derived from proteins that are essential for tumourigenesis and focus on targeting the unmutated peptide QYNPIRTTF, discovered on HLA-A*24:02, which is derived from the neuroblastoma dependency gene and master transcriptional regulator PHOX2B. To target QYNPIRTTF, we developed peptide-centric chimeric antigen receptors (CARs) using a counter-panning strategy with predicted potentially cross-reactive peptides. We further hypothesized that peptide-centric CARs could recognize peptides on additional HLA allotypes when presented in a similar manner. Informed by computational modelling, we showed that PHOX2B peptide-centric CARs also recognize QYNPIRTTF presented by HLA-A*23:01 and the highly divergent HLA-B*14:02. Finally, we demonstrated potent and specific killing of neuroblastoma cells expressing these HLAs in vitro and complete tumour regression in mice. These data suggest that peptide-centric CARs have the potential to vastly expand the pool of immunotherapeutic targets to include non-immunogenic intracellular oncoproteins and widen the population of patients who would benefit from such therapy by breaking conventional HLA restriction.


Assuntos
Antígenos de Neoplasias/imunologia , Antígenos HLA/imunologia , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Proteínas Oncogênicas/imunologia , Receptores de Antígenos Quiméricos/imunologia , Animais , Antígenos de Neoplasias/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Reações Cruzadas , Apresentação Cruzada , Feminino , Antígenos HLA/metabolismo , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Humanos , Interferon gama/imunologia , Camundongos , Neoplasias/metabolismo , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/metabolismo , Linfócitos T/imunologia , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
7.
Biol Open ; 9(5)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32295830

RESUMO

The five-protein MuvB core complex is highly conserved in animals. This nuclear complex interacts with RB-family tumor suppressor proteins and E2F-DP transcription factors to form DREAM complexes that repress genes that regulate cell cycle progression and cell fate. The MuvB core complex also interacts with Myb family oncoproteins to form the Myb-MuvB complexes that activate many of the same genes. We show that animal-type Myb genes are present in Bilateria, Cnidaria and Placozoa, the latter including the simplest known animal species. However, bilaterian nematode worms lost their animal-type Myb genes hundreds of millions of years ago. Nevertheless, amino acids in the LIN9 and LIN52 proteins that directly interact with the MuvB-binding domains of human B-Myb and Drosophila Myb are conserved in Caenorhabditiselegans Here, we show that, despite greater than 500 million years since their last common ancestor, the Drosophila melanogaster Myb protein can bind to the nematode LIN9-LIN52 proteins in vitro and can cause a synthetic multivulval (synMuv) phenotype in vivo This phenotype is similar to that caused by loss-of-function mutations in C. elegans synMuvB-class genes including those that encode homologs of the MuvB core, RB, E2F and DP. Furthermore, amino acid substitutions in the MuvB-binding domain of Drosophila Myb that disrupt its functions in vitro and in vivo also disrupt these activities in C. elegans We speculate that nematodes and other animals may contain another protein that can bind to LIN9 and LIN52 in order to activate transcription of genes repressed by DREAM complexes.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Drosophila/fisiologia , Regulação da Expressão Gênica , Estudos de Associação Genética , Fenótipo , Proteínas Proto-Oncogênicas c-myb/genética , Sequência de Aminoácidos , Animais , Evolução Biológica , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Evolução Molecular , Estudos de Associação Genética/métodos , Humanos , Modelos Moleculares , Filogenia , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas c-myb/química , Proteínas Proto-Oncogênicas c-myb/metabolismo , Relação Estrutura-Atividade
8.
Science ; 366(6471)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31831640

RESUMO

The p27 protein is a canonical negative regulator of cell proliferation and acts primarily by inhibiting cyclin-dependent kinases (CDKs). Under some circumstances, p27 is associated with active CDK4, but no mechanism for activation has been described. We found that p27, when phosphorylated by tyrosine kinases, allosterically activated CDK4 in complex with cyclin D1 (CDK4-CycD1). Structural and biochemical data revealed that binding of phosphorylated p27 (phosp27) to CDK4 altered the kinase adenosine triphosphate site to promote phosphorylation of the retinoblastoma tumor suppressor protein (Rb) and other substrates. Surprisingly, purified and endogenous phosp27-CDK4-CycD1 complexes were insensitive to the CDK4-targeting drug palbociclib. Palbociclib instead primarily targeted monomeric CDK4 and CDK6 (CDK4/6) in breast tumor cells. Our data characterize phosp27-CDK4-CycD1 as an active Rb kinase that is refractory to clinically relevant CDK4/6 inhibitors.


Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Regulação Alostérica , Antineoplásicos/farmacologia , Biocatálise , Linhagem Celular Tumoral , Cristalografia por Raios X , Ciclina D1/química , Quinase 4 Dependente de Ciclina/química , Inibidor de Quinase Dependente de Ciclina p27/química , Ativação Enzimática , Humanos , Fosforilação , Conformação Proteica , Proteína do Retinoblastoma/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(51): 25602-25613, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31796585

RESUMO

The interplay between a highly polymorphic set of MHC-I alleles and molecular chaperones shapes the repertoire of peptide antigens displayed on the cell surface for T cell surveillance. Here, we demonstrate that the molecular chaperone TAP-binding protein related (TAPBPR) associates with a broad range of partially folded MHC-I species inside the cell. Bimolecular fluorescence complementation and deep mutational scanning reveal that TAPBPR recognition is polarized toward the α2 domain of the peptide-binding groove, and depends on the formation of a conserved MHC-I disulfide epitope in the α2 domain. Conversely, thermodynamic measurements of TAPBPR binding for a representative set of properly conformed, peptide-loaded molecules suggest a narrower MHC-I specificity range. Using solution NMR, we find that the extent of dynamics at "hotspot" surfaces confers TAPBPR recognition of a sparsely populated MHC-I state attained through a global conformational change. Consistently, restriction of MHC-I groove plasticity through the introduction of a disulfide bond between the α1/α2 helices abrogates TAPBPR binding, both in solution and on a cellular membrane, while intracellular binding is tolerant of many destabilizing MHC-I substitutions. Our data support parallel TAPBPR functions of 1) chaperoning unstable MHC-I molecules with broad allele-specificity at early stages of their folding process, and 2) editing the peptide cargo of properly conformed MHC-I molecules en route to the surface, which demonstrates a narrower specificity. Our results suggest that TAPBPR exploits localized structural adaptations, both near and distant to the peptide-binding groove, to selectively recognize discrete conformational states sampled by MHC-I alleles, toward editing the repertoire of displayed antigens.


Assuntos
Antígenos de Histocompatibilidade Classe I , Chaperonas Moleculares , Peptídeos , Dissulfetos/química , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunoglobulinas/química , Imunoglobulinas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica , Domínios Proteicos
10.
Proc Natl Acad Sci U S A ; 115(40): 10016-10021, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224471

RESUMO

The MuvB transcriptional regulatory complex, which controls cell-cycle-dependent gene expression, cooperates with B-Myb to activate genes required for the G2 and M phases of the cell cycle. We have identified the domain in B-Myb that is essential for the assembly of the Myb-MuvB (MMB) complex. We determined a crystal structure that reveals how this B-Myb domain binds MuvB through the adaptor protein LIN52 and the scaffold protein LIN9. The structure and biochemical analysis provide an understanding of how oncogenic B-Myb is recruited to regulate genes required for cell-cycle progression, and the MMB interface presents a potential therapeutic target to inhibit cancer cell proliferation.


Assuntos
Proteínas de Ciclo Celular , Ciclo Celular , Complexos Multiproteicos , Proteínas de Neoplasias , Neoplasias , Proteínas Nucleares , Transativadores , Proteínas Supressoras de Tumor , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cristalografia por Raios X , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Neoplasias/química , Neoplasias/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Domínios Proteicos , Transativadores/química , Transativadores/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo
11.
Front Immunol ; 9: 99, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441070

RESUMO

The identification of recurrent human leukocyte antigen (HLA) neoepitopes driving T cell responses against tumors poses a significant bottleneck in the development of approaches for precision cancer therapeutics. Here, we employ a bioinformatics method, Prediction of T Cell Epitopes for Cancer Therapy, to analyze sequencing data from neuroblastoma patients and identify a recurrent anaplastic lymphoma kinase mutation (ALK R1275Q) that leads to two high affinity neoepitopes when expressed in complex with common HLA alleles. Analysis of the X-ray structures of the two peptides bound to HLA-B*15:01 reveals drastically different conformations with measurable changes in the stability of the protein complexes, while the self-epitope is excluded from binding due to steric hindrance in the MHC groove. To evaluate the range of HLA alleles that could display the ALK neoepitopes, we used structure-based Rosetta comparative modeling calculations, which accurately predict several additional high affinity interactions and compare our results with commonly used prediction tools. Subsequent determination of the X-ray structure of an HLA-A*01:01 bound neoepitope validates atomic features seen in our Rosetta models with respect to key residues relevant for MHC stability and T cell receptor recognition. Finally, MHC tetramer staining of peripheral blood mononuclear cells from HLA-matched donors shows that the two neoepitopes are recognized by CD8+ T cells. This work provides a rational approach toward high-throughput identification and further optimization of putative neoantigen/HLA targets with desired recognition features for cancer immunotherapy.


Assuntos
Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/imunologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Epitopos/genética , Epitopos/imunologia , Mutação , Alelos , Sequência de Aminoácidos , Quinase do Linfoma Anaplásico/metabolismo , Antígenos de Neoplasias/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Biologia Computacional/métodos , Epitopos/química , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Modelos Moleculares , Peptídeos/genética , Peptídeos/imunologia , Peptídeos/metabolismo , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade
12.
EMBO J ; 36(15): 2251-2262, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28666995

RESUMO

Cyclin-dependent kinases (Cdks) are principal drivers of cell division and are an important therapeutic target to inhibit aberrant proliferation. Cdk enzymatic activity is tightly controlled through cyclin interactions, posttranslational modifications, and binding of inhibitors such as the p27 tumor suppressor protein. Spy1/RINGO (Spy1) proteins bind and activate Cdk but are resistant to canonical regulatory mechanisms that establish cell-cycle checkpoints. Cancer cells exploit Spy1 to stimulate proliferation through inappropriate activation of Cdks, yet the mechanism is unknown. We have determined crystal structures of the Cdk2-Spy1 and p27-Cdk2-Spy1 complexes that reveal how Spy1 activates Cdk. We find that Spy1 confers structural changes to Cdk2 that obviate the requirement of Cdk activation loop phosphorylation. Spy1 lacks the cyclin-binding site that mediates p27 and substrate affinity, explaining why Cdk-Spy1 is poorly inhibited by p27 and lacks specificity for substrates with cyclin-docking sites. We identify mutations in Spy1 that ablate its ability to activate Cdk2 and to proliferate cells. Our structural description of Spy1 provides important mechanistic insights that may be utilized for targeting upregulated Spy1 in cancer.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Quinase 2 Dependente de Ciclina/química , Quinase 2 Dependente de Ciclina/metabolismo , Regulação Enzimológica da Expressão Gênica , Proteínas de Ciclo Celular/genética , Análise Mutacional de DNA , Fosforilação , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional
13.
Proc Natl Acad Sci U S A ; 114(19): 4942-4947, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28439018

RESUMO

The retinoblastoma protein (Rb) and the homologous pocket proteins p107 and p130 negatively regulate cell proliferation by binding and inhibiting members of the E2F transcription factor family. The structural features that distinguish Rb from other pocket proteins have been unclear but are critical for understanding their functional diversity and determining why Rb has unique tumor suppressor activities. We describe here important differences in how the Rb and p107 C-terminal domains (CTDs) associate with the coiled-coil and marked-box domains (CMs) of E2Fs. We find that although CTD-CM binding is conserved across protein families, Rb and p107 CTDs show clear preferences for different E2Fs. A crystal structure of the p107 CTD bound to E2F5 and its dimer partner DP1 reveals the molecular basis for pocket protein-E2F binding specificity and how cyclin-dependent kinases differentially regulate pocket proteins through CTD phosphorylation. Our structural and biochemical data together with phylogenetic analyses of Rb and E2F proteins support the conclusion that Rb evolved specific structural motifs that confer its unique capacity to bind with high affinity those E2Fs that are the most potent activators of the cell cycle.


Assuntos
Fatores de Transcrição E2F/química , Proteína do Retinoblastoma/química , Proteína p107 Retinoblastoma-Like/química , Cristalografia por Raios X , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Humanos , Domínios Proteicos , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Proteína p107 Retinoblastoma-Like/genética , Proteína p107 Retinoblastoma-Like/metabolismo
14.
Science ; 355(6330): 1174-1180, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28302851

RESUMO

Circadian clocks are ubiquitous timing systems that induce rhythms of biological activities in synchrony with night and day. In cyanobacteria, timing is generated by a posttranslational clock consisting of KaiA, KaiB, and KaiC proteins and a set of output signaling proteins, SasA and CikA, which transduce this rhythm to control gene expression. Here, we describe crystal and nuclear magnetic resonance structures of KaiB-KaiC,KaiA-KaiB-KaiC, and CikA-KaiB complexes. They reveal how the metamorphic properties of KaiB, a protein that adopts two distinct folds, and the post-adenosine triphosphate hydrolysis state of KaiC create a hub around which nighttime signaling events revolve, including inactivation of KaiA and reciprocal regulation of the mutually antagonistic signaling proteins, SasA and CikA.


Assuntos
Proteínas de Bactérias/química , Relógios Circadianos , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/química , Cianobactérias/fisiologia , Proteínas Quinases/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/ultraestrutura , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/ultraestrutura , Cristalografia por Raios X , Cianobactérias/enzimologia , Hidrólise , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Proteínas Quinases/ultraestrutura , Multimerização Proteica
15.
Nat Commun ; 7: 12301, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27465258

RESUMO

The MuvB complex recruits transcription factors to activate or repress genes with cell cycle-dependent expression patterns. MuvB contains the DNA-binding protein LIN54, which directs the complex to promoter cell cycle genes homology region (CHR) elements. Here we characterize the DNA-binding properties of LIN54 and describe the structural basis for recognition of a CHR sequence. We biochemically define the CHR consensus as TTYRAA and determine that two tandem cysteine rich regions are required for high-affinity DNA association. A crystal structure of the LIN54 DNA-binding domain in complex with a CHR sequence reveals that sequence specificity is conferred by two tyrosine residues, which insert into the minor groove of the DNA duplex. We demonstrate that this unique tyrosine-mediated DNA binding is necessary for MuvB recruitment to target promoters. Our results suggest a model in which MuvB binds near transcription start sites and plays a role in positioning downstream nucleosomes.


Assuntos
Ciclo Celular/genética , Regiões Promotoras Genéticas , Homologia de Sequência do Ácido Nucleico , Transativadores/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Sequência Consenso , Cristalografia por Raios X , DNA/metabolismo , Humanos , Nucleossomos/metabolismo , Ligação Proteica , Domínios Proteicos , Transativadores/química , Tirosina/metabolismo
16.
Biochemistry ; 53(9): 1435-46, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24533927

RESUMO

The crystal structure of the flavin mononucleotide (FMN)-containing redox partner to P450cin, cindoxin (Cdx), has been determined to 1.3 Å resolution. The overall structure is similar to that of the FMN domain of human cytochrome P450 reductase. A Brownian dynamics-molecular dynamics docking method was used to produce a model of Cdx with its redox partner, P450cin. This Cdx-P450cin model highlights the potential importance of Cdx Tyr96 in bridging the FMN and heme cofactors as well P450cin Arg102 and Arg346. Each of the single-site Ala mutants exhibits ~10% of the wild-type activity, thus demonstrating the importance of these residues for binding and/or electron transfer. In the well-studied P450cam system, redox partner binding stabilizes the open low-spin conformation of P450cam and greatly decreases the stability of the oxy complex. In sharp contrast, Cdx does not shift P450cin to a low-spin state, although the stability of oxy-P450cin is decreased 10-fold in the presence of Cdx. This indicates that Cdx may have a modest effect on the open-closed equilibrium in P450cin compared to that in P450cam. It has been postulated that part of the effector role of Pdx on P450cam is to promote a significant structural change that makes available a proton relay network involving Asp251 required for O2 activation. The structure around the corresponding Asp in P450cin, Asp241, provides a possible structural reason for why P450cin is less dependent on its redox partner for functionally important structural changes.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Sítios de Ligação , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Humanos , Oxirredução , Estrutura Secundária de Proteína
17.
Biochemistry ; 51(33): 6623-31, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22775403

RESUMO

The crystal structure of the P450cin substrate-bound nitric oxide complex and the substrate-free form have been determined revealing a substrate-free structure that adopts an open conformation relative to the substrate-bound structure. The region of the I helix that forms part of the O(2) binding pocket shifts from an α helix in the substrate-free form to a π helix in the substrate-bound form. Unique to P450cin is an active site residue, Asn242, in the I helix that H-bonds with the substrate. In most other P450s this residue is a Thr and plays an important role in O(2) activation by participating in an H-bonding network required for O(2) activation. The π/α I helix transition results in the carbonyl O atom of Gly238 moving in to form an H-bond with the water/hydroxide ligand in the substrate-free form. The corresponding residue, Gly248, in the substrate-free P450cam structure experiences a similar motion. Most significantly, in the oxy-P450cam complex Gly248 adopts a position midway between the substrate-free and -bound states. A comparison between these P450cam and the new P450cin structures provides insights into differences in how the two P450s activate O(2). The structure of P450cin complexed with nitric oxide, a close mimic of the O(2) complex, shows that Gly238 is likely to form tighter interactions with ligands than the corresponding Gly248 in P450cam. Having a close interaction between an H-bond acceptor, the Gly238 carbonyl O atom, and the distal oxygen atom of O(2) will promote protonation and hence further reduction of the oxy complex to the hydroperoxy intermediate resulting in heterolytic cleavage of the peroxide O-O bond and formation of the active ferryl intermediate required for substrate hydroxylation.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Cânfora 5-Mono-Oxigenase/química , Cânfora 5-Mono-Oxigenase/metabolismo , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Modelos Moleculares , Óxido Nítrico/química , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA