Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 345: 122593, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554946

RESUMO

Targeted therapy and imaging are the most popular techniques for the intervention and diagnosis of cancer. A potential therapeutic target for the treatment of cancer is the epidermal growth factor receptor (EGFR), primarily for glioblastoma, lung, and breast cancer. Over-production of ligand, transcriptional up-regulation due to autocrine/paracrine signalling, or point mutations at the genomic locus may contribute to the malfunction of EGFR in malignancies. This exploit makes use of EGFR, an established biomarker for cancer diagnostics and treatment. Despite considerable development in the last several decades in making EGFR inhibitors, they are still not free from limitations like toxicity and a short serum half-life. Nanobodies and antibodies share similar binding properties, but nanobodies have the additional advantage that they can bind to antigenic epitopes deep inside the target that conventional antibodies are unable to access. For targeted therapy, anti-EGFR nanobodies can be conjugated to various molecules such as drugs, peptides, toxins and photosensitizers. These nanobodies can be designed as novel immunoconjugates using the universal modular antibody-based platform technology (UniCAR). Furthermore, Anti-EGFR nanobodies can be expressed in neural stem cells and visualised by effective fluorescent and radioisotope labelling.


Assuntos
Receptores ErbB , Anticorpos de Domínio Único , Humanos , Anticorpos , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Medicina de Precisão , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/uso terapêutico
2.
Biochim Biophys Acta Gen Subj ; 1868(1): 130499, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914146

RESUMO

BACKGROUND: L-asparaginase (ASNase) has played a key role in the management of acute lymphoblastic leukaemia (ALL). As an amidohydrolase, it catalyzes the hydrolysis of L-asparagine, a crucial step in the treatment of ALL. Various ASNase variants have evolved from diverse sources since it was first used in paediatric patients in the 1960s. This review describes the available ASNase and approaches being used to develop ASNase as a biobetter candidate. SCOPE OF REVIEW: The review discusses the Glycosylation and PEGylation techniques, which are frequently used to develop biobetter versions of the majority of the therapeutic proteins. Further, it explores current ASNase biobetters in therapeutic use and discusses the protein engineering and chemical modification approaches that were employed to reduce immunogenicity, extend protein half-life, and enhance protease stability of ASNase. Emerging strategies like immobilization and encapsulation are also highlighted as potential pathways for improving ASNase properties. MAJOR CONCLUSIONS: The purpose of the development of ASNase biobetter is to achieve a novel therapeutic candidate that could improve catalytic efficiency, in vivo stability with minimum glutaminase (GLNase) activity and toxicity. Modification of ASNase by immobilization and encapsulation or by fusion technologies like Albumin fusion, Fc fusion, ELP fusion, XTEN fusion, etc. can be exploited to develop a novel biobetter candidate suitable for therapeutic approaches. GENERAL SIGNIFICANCE: This review emphasizes the importance of biobetter development for therapeutic proteins like ASNase. Improved ASNase molecules have the potential to significantly advance the treatment of ALL and have broader implications in the pharmaceutical industry.


Assuntos
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Criança , Asparaginase/genética , Asparaginase/uso terapêutico , Asparaginase/química , Antineoplásicos/química , Asparagina , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Glutamina/metabolismo
3.
Biochem Biophys Res Commun ; 380(1): 71-5, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19159618

RESUMO

The physiological function of apolipoprotein E (apoE) includes transport and metabolism of lipids and its C-terminal domain harbors high affinity lipid-binding sites. Although the binding of apoE with non-oxidized phospholipid containing membranes has been characterized earlier, the interaction of apoE or its fragments with oxidized phospholipid containing membrane has never been studied. In this study we have compared the interaction of amphipathic helical peptide sequences derived from the C-terminal domain of apoE with membrane vesicles containing oxidized phospholipid, 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), with membrane vesicles without PazePC. The interaction was studied by monitoring (a) fluorescence emission maxima of the peptides, (b) acrylamide quenching of the peptides tryptophan residues and (c) by measuring the equilibrium binding constants by resonance energy transfer (RET) analysis. Our result shows that peptide sequence 202-223, 245-266 and 268-289 of apoE has higher affinity towards membrane containing PazePC, compared to membrane without PazePC. Presence of 1mM divalent cation or 50 mM NaCl in the buffer decreased the binding of peptides to PazePC containing membrane vesicles suggesting possible involvement of the electrostatic interaction in the binding. These observations suggest that the preferential binding of apoE to oxidized phospholipid containing membrane may play a role in the anti-oxidative properties of apoE.


Assuntos
Apolipoproteínas E/metabolismo , Membrana Celular/metabolismo , Peptídeos/metabolismo , Fosfolipídeos/metabolismo , Sequência de Aminoácidos , Apolipoproteínas E/genética , Membrana Celular/química , Humanos , Oxirredução , Peptídeos/genética , Fosfolipídeos/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA