Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; : e5173, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38783837

RESUMO

PURPOSE: The purpose of this work is to apply multi-echo spin- and gradient-echo (SAGE) echo-planar imaging (EPI) combined with a navigator-based (NAV) prospective motion compensation method for a quantitative liver blood oxygen level dependent (BOLD) measurement with a breath-hold (BH) task. METHODS: A five-echo SAGE sequence was developed to quantitatively measure T2 and T2* to depict function with sufficient signal-to-noise ratio, spatial resolution and sensitivity to BOLD changes induced by the BH task. To account for respiratory motion, a navigator was employed in the form of a single gradient-echo projection readout, located at the diaphragm along the inferior-superior direction. Prior to each transverse imaging slice of the spin-echo EPI-based readouts, navigator acquisition and fat suppression were incorporated. Motion data was obtained from the navigator and transmitted back to the sequence, allowing real-time adjustments to slice positioning. Six healthy volunteers and three patients with liver carcinoma were included in this study. Quantitative T2 and T2* were calculated at each time point of the BH task. Parameters of t value from first-level analysis using a general linear model and hepatovascular reactivity (HVR) of Echo1, T2 and T2* were calculated. RESULTS: The motion caused by respiratory activity was successfully compensated using the navigator signal. The average changes of T2 and T2* during breath-hold were about 1% and 0.7%, respectively. With the help of NAV prospective motion compensation whole liver t values could be obtained without motion artifacts. The quantified liver T2 (34.7 ± 0.7 ms) and T2* (29 ± 1.2 ms) values agreed with values from literature. In healthy volunteers, the distribution of statistical t value and HVR was homogeneous throughout the whole liver. In patients with liver carcinoma, the distribution of t value and HVR was inhomogeneous due to metastases or therapy. CONCLUSIONS: This study demonstrates the feasibility of using a NAV prospective motion compensation technique in conjunction with five-echo SAGE EPI for the quantitative measurement of liver BOLD with a BH task.

2.
J Magn Reson Imaging ; 59(3): 784-796, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37466278

RESUMO

"Lung perfusion" in the context of imaging conventionally refers to the delivery of blood to the pulmonary capillary bed through the pulmonary arteries originating from the right ventricle required for oxygenation. The most important physiological mechanism in the context of imaging is the so-called hypoxic pulmonary vasoconstriction (HPV, also known as "Euler-Liljestrand-Reflex"), which couples lung perfusion to lung ventilation. In obstructive airway diseases such as asthma, chronic-obstructive pulmonary disease (COPD), cystic fibrosis (CF), and asthma, HPV downregulates pulmonary perfusion in order to redistribute blood flow to functional lung areas in order to conserve optimal oxygenation. Imaging of lung perfusion can be seen as a reflection of lung ventilation in obstructive airway diseases. Other conditions that primarily affect lung perfusion are pulmonary vascular diseases, pulmonary hypertension, or (chronic) pulmonary embolism, which also lead to inhomogeneity in pulmonary capillary blood distribution. Several magnetic resonance imaging (MRI) techniques either dependent on exogenous contrast materials, exploiting periodical lung signal variations with cardiac action, or relying on intrinsic lung voxel attributes have been demonstrated to visualize lung perfusion. Additional post-processing may add temporal information and provide quantitative information related to blood flow. The most widely used and robust technique, dynamic-contrast enhanced MRI, is available in clinical routine assessment of COPD, CF, and pulmonary vascular disease. Non-contrast techniques are important research tools currently requiring clinical validation and cross-correlation in the absence of a viable standard of reference. First data on many of these techniques in the context of observational studies assessing therapy effects have just become available. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 5.


Assuntos
Asma , Fibrose Cística , Infecções por Papillomavirus , Doença Pulmonar Obstrutiva Crônica , Humanos , Pulmão , Imageamento por Ressonância Magnética/métodos , Perfusão
3.
Ann Am Thorac Soc ; 20(11): 1595-1604, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37579262

RESUMO

Rationale: Magnetic resonance imaging (MRI) detects improvements in mucus plugging and bronchial wall thickening, but not in lung perfusion in patients with cystic fibrosis (CF) treated with elexacaftor/tezacaftor/ivacaftor (ETI). Objectives: To determine whether bronchial artery dilatation (BAD), a key feature of advanced lung disease, indicates irreversibility of perfusion abnormalities and whether BAD could be reversed in CF patients treated with ETI. Methods: A total of 59 adults with CF underwent longitudinal chest MRI, including magnetic resonance angiography twice, comprising 35 patients with CF (mean age, 31 ± 7 yr) before (MRI1) and after (MRI2) at least 1 month (mean duration, 8 ± 4 mo) on ETI therapy and 24 control patients with CF (mean age, 31 ± 7 yr) without ETI. MRI was assessed using the validated chest MRI score, and the presence and total lumen area of BAD were assessed with commercial software. Results: The MRI global score was stable in the control group from MRI1 to MRI2 (mean difference, 1.1 [-0.3, 2.4]; P = 0.054), but it was reduced in the ETI group (-10.1 [-0.3, 2.4]; P < 0.001). In the control and ETI groups, BAD was present in almost all patients at baseline (95% and 94%, respectively), which did not change at MRI2. The BAD total lumen area did not change in the control group from MRI1 to MRI2 (1.0 mm2 [-0.2, 2.2]; P = 0.099) but decreased in the ETI group (-7.0 mm2 [-8.9, -5.0]; P < 0.001). This decrease correlated with improvements in the MRI global score (r = 0.540; P < 0.001). Conclusions: Our data show that BAD may be partially reversible under ETI therapy in adult patients with CF who have established disease.


Assuntos
Fibrose Cística , Adulto , Humanos , Adulto Jovem , Fibrose Cística/diagnóstico por imagem , Fibrose Cística/tratamento farmacológico , Artérias Brônquicas/diagnóstico por imagem , Dilatação , Imageamento por Ressonância Magnética , Regulador de Condutância Transmembrana em Fibrose Cística , Mutação , Aminofenóis
4.
ERJ Open Res ; 9(2)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37009019

RESUMO

Background: Bronchial artery dilatation (BAD) is associated with haemoptysis in advanced cystic fibrosis (CF) lung disease. Our aim was to evaluate BAD onset and its association with disease severity by magnetic resonance imaging (MRI). Methods: 188 CF patients (mean±sd age 13.8±10.6 years, range 1.1-55.2 years) underwent annual chest MRI (median three exams, range one to six exams), contributing a total of 485 MRI exams including perfusion MRI. Presence of BAD was evaluated by two radiologists in consensus. Disease severity was assessed using the validated MRI scoring system and spirometry (forced expiratory volume in 1 s (FEV1) % pred). Results: MRI demonstrated BAD in 71 (37.8%) CF patients consistently from the first available exam and a further 10 (5.3%) patients first developed BAD during surveillance. Mean MRI global score in patients with BAD was 24.5±8.3 compared with 11.8±7.0 in patients without BAD (p<0.001) and FEV1 % pred was lower in patients with BAD compared with patients without BAD (60.8% versus 82.0%; p<0.001). BAD was more prevalent in patients with chronic Pseudomonas aeruginosa infection versus in patients without infection (63.6% versus 28.0%; p<0.001). In the 10 patients who newly developed BAD, the MRI global score increased from 15.1±7.8 before to 22.0±5.4 at first detection of BAD (p<0.05). Youden indices for the presence of BAD were 0.57 for age (cut-off 11.2 years), 0.65 for FEV1 % pred (cut-off 74.2%) and 0.62 for MRI global score (cut-off 15.5) (p<0.001). Conclusions: MRI detects BAD in patients with CF without radiation exposure. Onset of BAD is associated with increased MRI scores, worse lung function and chronic P. aeruginosa infection, and may serve as a marker of disease severity.

5.
Front Med (Lausanne) ; 9: 1022981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353218

RESUMO

Background: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) allows the assessment of pulmonary perfusion, which may play a key role in the development of muco-obstructive lung disease. One problem with quantifying pulmonary perfusion is the high variability of metrics. Quantifying the extent of abnormalities using unsupervised clustering algorithms in residue function maps leads to intrinsic normalization and could reduce variability. Purpose: We investigated the reproducibility of perfusion defects in percent (QDP) in clinically stable patients with cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Methods: 15 CF (29.3 ± 9.3y, FEV1%predicted = 66.6 ± 15.8%) and 20 COPD (66.5 ± 8.9y, FEV1%predicted = 42.0 ± 13.3%) patients underwent DCE-MRI twice 1 month apart. QDP, pulmonary blood flow (PBF), and pulmonary blood volume (PBV) were computed from residue function maps using an in-house quantification pipeline. A previously validated MRI perfusion score was visually assessed by an expert reader. Results: Overall, mean QDP, PBF, and PBV did not change within 1 month, except for QDP in COPD (p < 0.05). We observed smaller limits of agreement (± 1.96 SD) related to the median for QDP (CF: ± 38%, COPD: ± 37%) compared to PBF (CF: ± 89%, COPD: ± 55%) and PBV (CF: ± 55%, COPD: ± 51%). QDP correlated moderately with the MRI perfusion score in CF (r = 0.46, p < 0.05) and COPD (r = 0.66, p < 0.001). PBF and PBV correlated poorly with the MRI perfusion score in CF (r =-0.29, p = 0.132 and r =-0.35, p = 0.067, respectively) and moderately in COPD (r =-0.57 and r =-0.57, p < 0.001, respectively). Conclusion: In patients with muco-obstructive lung diseases, QDP was more robust and showed a higher correlation with the MRI perfusion score compared to the traditionally used perfusion metrics PBF and PBV.

6.
J Cyst Fibros ; 21(6): 1053-1060, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35400600

RESUMO

BACKGROUND: Therapy with Elexacaftor/Tezacaftor/Ivacaftor (ETI) was recently approved for adult cystic fibrosis (CF) patients with at least one F508del mutation. However, its effects on structural and functional lung abnormalities and chronic rhinosinusitis have not been studied by imaging. METHODS: 19 adults with CF (mean age 31±9y, range 19-55y) underwent standardized chest magnetic resonance imaging (MRI), and nine also same-session sinonasal MRI, before (MRI1) and after (MRI2) at least one month (mean duration 5 ± 3mon) on ETI. 24 control CF patients (30±7y, range 20-44y) without ETI underwent longitudinal chest MRI, and eleven also sinonasal MRI, twice (mean interval 40±15mon). MRI was assessed using the validated chest MRI score and chronic rhinosinusitis (CRS)-MRI score. Forced expiratory volume in 1 s percent predicted (FEV1%) was measured in all patients. RESULTS: In controls, the chest MRI global score and CRS-MRI sum score were stable from MRI1 to MRI2. In patients under ETI, the chest MRI global score improved (-11.4 ± 4.6, P<0.001), mainly due to reduction of bronchiectasis/wall thickening and mucus plugging subscores (-3.3 ± 2.2 and -5.2 ± 1.5, P<0.001, respectively). The improvement in chest MRI score correlated well with improved FEV1% (r=-0.703, P<0.001). The CRS-MRI sum score also improved in patients under ETI (-6.9 ± 3.0, P<0.001), mainly due to a reduction of mucopyoceles in the maxillary and ethmoid sinus (-50% and -39%, P<0.05, respectively). CONCLUSIONS: MRI detects improvements of chest MRI and CRS-MRI scores in adult CF patients who first received ETI, demonstrating reversibility of structural lung and paranasal sinus abnormalities in patients with established disease.


Assuntos
Fibrose Cística , Adulto , Humanos , Adulto Jovem , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Fibrose Cística/diagnóstico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Aminofenóis , Benzodioxóis , Pulmão/diagnóstico por imagem , Mutação , Imageamento por Ressonância Magnética
7.
J Magn Reson Imaging ; 52(6): 1645-1654, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32613717

RESUMO

BACKGROUND: Noninvasive monitoring of early abnormalities and therapeutic intervention in cystic fibrosis (CF) lung disease using MRI is important. Lung T1 mapping has shown potential for local functional imaging without contrast material. Recently, it was discovered that observed lung T1 depends on the measurement echo time (TE). PURPOSE: To examine TE-dependence of observed T1 in patients with CF and its correlation with clinical metrics. STUDY TYPE: Prospective. POPULATION: In all, 75 pediatric patients with CF (8.6 ± 6.1 years, range 0.1-23 years), with 32 reexamined after 1 year. FIELD STRENGTH/SEQUENCE: Patients were examined at 1.5T using an established MRI protocol and a multiecho inversion recovery 2D ultrashort echo time (UTE) sequence for T1 (TE) mapping at five TEs including TE1 = 70 µs. ASSESSMENT: Morphological and perfusion MRI were assessed by a radiologist (M.W.) with 11 years of experience using an established CF-MRI scoring system. T1 (TE) was quantified automatically. Clinical data including spirometry (FEV1pred%) and lung clearance index (LCI) were collected. STATISTICAL TESTS: T1 (TE) was correlated with the CF-MRI score, clinical data, and LCI. RESULTS: T1 (TE) showed a different curvature in CF than in healthy adults: T1 at TE1 was shorter in CF (1157 ms ± 73 ms vs. 1047 ms ± 70 ms, P < 0.001), but longer at TE3 (1214 ms ± 72 ms vs. 1314 ms ± 68 ms, P < 0.001) and later TEs. The correlations of T1 (TE) with patient age (ρTE1-TE5 = -0.55, -0.44, -0.24, -0.30, -0.22), and LCI (ρTE1-TE5 = -0.43, -0.42, -0.33, 0.27, -0.22) were moderate at ultra-short to short TE (P < 0.001) but decreased for longer TE. Moderate but similar correlations at all TE were found with MRI perfusion score (ρTE1-TE5 = -0.43, -0.51, -0.47, -0.46, -0.44) and FEV1pred% (ρTE1-TE5 = +0.44, +0.44, +0.43, +0.40, +0.39) (P < 0.05). DATA CONCLUSION: TE should be considered when measuring lung T1 , since observed differences between CF and healthy subjects strongly depend on TE. The different variation of correlation coefficients with TE for structural vs. functional metrics implies that TE-dependence holds additional information which may help to discern effects of tissue structural abnormalities and abnormal perfusion. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1 J. MAGN. RESON. IMAGING 2020;52:1645-1654.


Assuntos
Fibrose Cística , Adulto , Benchmarking , Criança , Fibrose Cística/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Prospectivos , Testes de Função Respiratória
8.
PLoS One ; 14(8): e0220939, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31398234

RESUMO

OBJECTIVES: To apply the MB (multiband) excitation and blipped-CAIPI (blipped-controlled aliasing in parallel imaging) techniques in a spin and gradient-echo (SAGE) EPI sequence to improve the slice coverage for vessel architecture imaging (VAI). MATERIALS AND METHODS: Both MB excitation and blipped-CAIPI with in-plane parallel imaging were incorporated into a gradient-echo (GE)/spin-echo (SE) EPI sequence for simultaneous tracking of the dynamic MR signal changes in both GE and SE contrasts after the injection of contrast agent. MB and singleband (SB) excitation were compared using a 20-channel head coil at 3 Tesla, and high-resolution MB VAI could be performed in 32 glioma patients. RESULTS: Whole-brain covered high resolution VAI can be achieved after applying multiband excitation with a factor of 2 and in-plane parallel imaging with a factor of 3. The quality of the images resulting from MB acceleration was comparable to those from the SB method: images were reconstructed without any loss of spatial resolution or severe distortions. In addition, MB and SB signal-to-noise ratios (SNR) were similar. A relative low g-factor induced from the MB acceleration method was achieved after using a blipped-CAIPI technique (1.35 for GE and 1.33 for SE imaging). Performing quantitative VAI, we found that, among all VAI parametric maps, microvessel type indicator (MTI), distance map (I) and vascular-induced bolus peak-time shift (VIPS) were highly correlated. Likewise, VAI parametric maps of slope, slope length and short axis were highly correlated. CONCLUSIONS: Multiband accelerated SAGE successfully doubles the number of readout slices in the same measurement time when compared to conventional readout sequences. The corresponding VAI parametric maps provide insights into the complexity and heterogeneity of vascular changes in glioma.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Imagem Ecoplanar , Imageamento Tridimensional , Marcadores de Spin , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Meios de Contraste/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão Sinal-Ruído
9.
Rofo ; 191(5): 415-423, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30257269

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) of the pulmonary parenchyma is generally hampered by multiple challenges related to patient respiratory- and circulation-related motion, low proton density and extremely fast signal decay due to the structure of the lungs evolved for gas exchange. METHODS: Systematic literature database research as well as annual participation in conferences dedicated to pulmonary MRI for more than the past 20 years by at least one member of the author team. RESULTS AND CONCLUSION: The problem of motion has been addressed in the past by developments such as triggering, gating and parallel imaging. The second problem has, in part, turned out to be an advantage in those diseases that lead to an increase in lung substance and thus an increase in signal relative to the background. To reduce signal decay, ultrashort echo time (UTE) methods were developed to minimize the time between excitation and readout. Having been postulated a while ago, improved hardware and software now open up the possibility of achieving echo times shorter than 200 µs, increasing lung signal significantly by forestalling signal decay and more effectively using the few protons available. Such UTE techniques may not only improve structural imaging of the lung but also enhance functional imaging, including ventilation and perfusion imaging as well as quantitative parameter mapping. Because of accelerating progress in this field of lung MRI, the review at hand seeks to introduce some technical properties as well as to summarize the growing data from applications in humans and disease, which promise that UTE MRI will play an important role in the morphological and functional assessment of the lung in the near future. KEY POINTS: · Ultrashort echo time MRI is technically feasible with state-of-the-art scanner hardware.. · UTE MRI allows for CT-like image quality for structural lung imaging.. · Preliminary studies show improvements over conventional morphological imaging in lung cancer and airways diseases.. · UTE may improve sensitivity for functional processes like perfusion and tissue characterization.. CITATION FORMAT: · Wielpütz MO, Triphan SM, Ohno Y et al. Outracing Lung Signal Decay - Potential of Ultrashort Echo Time MRI. Fortschr Röntgenstr 2019; 191: 415 - 423.


Assuntos
Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Fibrose Cística/diagnóstico por imagem , Humanos , Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Imageamento Tridimensional/métodos , Recém-Nascido , Pulmão/irrigação sanguínea , Pneumopatias/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/instrumentação , Movimento/fisiologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Fluxo Sanguíneo Regional/fisiologia , Respiração , Síndrome do Desconforto Respiratório do Recém-Nascido/diagnóstico por imagem , Sensibilidade e Especificidade
10.
Eur J Radiol ; 101: 178-183, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29571794

RESUMO

OBJECTIVES: To determine if morphological non-contrast enhanced magnetic resonance imaging (MRI) of the lung is sensitive to detect mosaic signal intensity in infants and preschool children with cystic fibrosis (CF). MATERIALS AND METHODS: 50 infant and preschool CF patients (mean age 3.5 ±â€¯1.4y, range 0-6y) routinely underwent morphological (T2-weighted turbo-spin echo sequence with half-Fourier acquisition, HASTE) and contrast-enhanced 4D perfusion MRI (gradient echo sequence with parallel imaging and echo sharing, TWIST). MRI studies were independently scored by two readers blinded for patient age and clinical data (experienced Reader 1 = R1, inexperienced Reader 2 = R2). The extent of lung parenchyma signal abnormalities on HASTE was rated for each lobe from 0 (normal), 1 (<50% of lobe affected) to 2 (≥50% of lobe affected). Perfusion MRI was rated according to the previously established MRI score, and served as the standard of reference. RESULTS: Inter-method agreement between MRI mosaic score and perfusion score was moderate with κ = 0.58 (confidence interval 0.45-0.71) for R1, and with κ = 0.59 (0.46-0.72) for R2. Bland-Altman analysis revealed a slight tendency of the mosaic score to underestimate perfusion abnormalities with a score bias of 0.48 for R1 and 0.46 for R2. Inter-reader agreement for mosaic score was substantial with κ = 0.71 (0.62-0.79), and a low bias of 0.02. CONCLUSIONS: This study demonstrates that non-contrast enhanced MRI reliably detects mosaic signal intensity in infants and preschool children with CF, reflecting pulmonary blood volume distribution. It may thus be used as a surrogate for perfusion MRI if contrast material is contra-indicated or alternative techniques are not available.


Assuntos
Fibrose Cística/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Criança , Pré-Escolar , Fibrose Cística/patologia , Feminino , Humanos , Lactente , Pulmão/diagnóstico por imagem , Pulmão/patologia , Masculino
11.
PLoS One ; 10(9): e0137282, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26327295

RESUMO

PURPOSE: Non-invasive end-points for interventional trials and tailored treatment regimes in chronic obstructive pulmonary disease (COPD) for monitoring regionally different manifestations of lung disease instead of global assessment of lung function with spirometry would be valuable. Proton nuclear magnetic resonance imaging (1H-MRI) allows for a radiation-free assessment of regional structure and function. The aim of this study was to evaluate the short-term reproducibility of a comprehensive morpho-functional lung MRI protocol in COPD. MATERIALS AND METHODS: 20 prospectively enrolled COPD patients (GOLD I-IV) underwent 1H-MRI of the lung at 1.5T on two consecutive days, including sequences for morphology, 4D contrast-enhanced perfusion, and respiratory mechanics. Image quality and COPD-related morphological and functional changes were evaluated in consensus by three chest radiologists using a dedicated MRI-based visual scoring system. Test-retest reliability was calculated per each individual lung lobe for the extent of large airway (bronchiectasis, wall thickening, mucus plugging) and small airway abnormalities (tree in bud, peripheral bronchiectasis, mucus plugging), consolidations, nodules, parenchymal defects and perfusion defects. The presence of tracheal narrowing, dystelectasis, pleural effusion, pulmonary trunk ectasia, right ventricular enlargement and, finally, motion patterns of diaphragma and chest wall were addressed. RESULTS: Median global scores [10(Q1:8.00;Q3:16.00) vs.11(Q1:6.00;Q3:15.00)] as well as category subscores were similar between both timepoints, and kappa statistics indicated "almost perfect" global agreement (ĸ = 0.86, 95%CI = 0.81-0.91). Most subscores showed at least "substantial" agreement of MRI1 and MRI2 (ĸ = 0.64-1.00), whereas the agreement for the diagnosis of dystelectasis/effusion (ĸ = 0.42, 95%CI = 0.00-0.93) was "moderate" and of tracheal abnormalities (ĸ = 0.21, 95%CI = 0.00-0.75) "fair". Most MRI acquisitions showed at least diagnostic quality at MRI1 (276 of 278) and MRI2 (259 of 264). CONCLUSION: Morpho-functional 1H-MRI can be obtained with reproducible image quality and high short-term test-retest reliability for COPD-related morphological and functional changes of the lung. This underlines its potential value for the monitoring of regional lung characteristics in COPD trials.


Assuntos
Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Idoso , Bronquiectasia/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Muco/fisiologia , Perfusão/métodos , Estudos Prospectivos , Reprodutibilidade dos Testes , Mecânica Respiratória/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA