Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(6): e2315419121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285952

RESUMO

Persistent antigen exposure results in the differentiation of functionally impaired, also termed exhausted, T cells which are maintained by a distinct population of precursors of exhausted T (TPEX) cells. T cell exhaustion is well studied in the context of chronic viral infections and cancer, but it is unclear whether and how antigen-driven T cell exhaustion controls progression of autoimmune diabetes and whether this process can be harnessed to prevent diabetes. Using nonobese diabetic (NOD) mice, we show that some CD8+ T cells specific for the islet antigen, islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) displayed terminal exhaustion characteristics within pancreatic islets but were maintained in the TPEX cell state in peripheral lymphoid organs (PLO). More IGRP-specific T cells resided in the PLO than in islets. To examine the impact of extraislet antigen exposure on T cell exhaustion in diabetes, we generated transgenic NOD mice with inducible IGRP expression in peripheral antigen-presenting cells. Antigen exposure in the extraislet environment induced severely exhausted IGRP-specific T cells with reduced ability to produce interferon (IFN)γ, which protected these mice from diabetes. Our data demonstrate that T cell exhaustion induced by delivery of antigen can be harnessed to prevent autoimmune diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Camundongos , Animais , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/prevenção & controle , Proteínas/metabolismo , Exaustão das Células T , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Camundongos Transgênicos , Camundongos Endogâmicos NOD , Ilhotas Pancreáticas/metabolismo , Linfócitos T CD8-Positivos
2.
Cleft Palate Craniofac J ; : 10556656231205974, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801491

RESUMO

OBJECTIVE: Optimal Outcomes Reporting was recently introduced to categorize outcomes after cleft palate repair. We seek to propose an expanded version of Optimal Outcomes Reporting and to determine if correlation exists between the expanded outcomes and persistence with team care follow-up through age 9. DESIGN: Retrospective cohort study. SETTING: Cleft team at large pediatric hospital. PATIENTS: Patients with isolated nonsyndromic cleft palate (n = 83) born from 2001-2012. MAIN OUTCOME MEASURES: Patients who continued to present at age 5 or greater were assessed for optimal outcomes. Optimal outcomes were: surgery - no fistula or velopharyngeal insufficiency; otolaryngology - no obstructive sleep apnea or signs of chronic middle ear disease; audiology - no hearing loss; speech-language pathology - no assessed need for speech therapy. RESULTS: Of the 83 patients identified, 41 were assessed for optimal outcomes. Optimal outcome in any discipline was not associated with follow-up through age 9 (0.112 ≤ p ≤ 0.999). For all disciplines, the group with suboptimal outcomes had a higher proportion of patients from geographic areas in the most disadvantaged quartile of social vulnerability index, with the strongest association in the group with suboptimal speech outcome (OR 6.75, 95% CI 0.841-81.1). CONCLUSIONS: Optimal outcomes and retention in team clinic were not statistically significantly associated, but clinically relevant associations were found between patients in the most disadvantaged quartile of social vulnerability and their outcomes. A patient-centered approach, including caregiver education about long-term care for patients with cleft palate, would allow for enhanced resource utilization to improve retention for patients of concern.

3.
Clin Transl Immunology ; 11(11): e1425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325490

RESUMO

Objectives: Immune checkpoint inhibitors have achieved clinical success in cancer treatment, but this treatment causes immune-related adverse events, including type 1 diabetes (T1D). Our aim was to test whether a JAK1/JAK2 inhibitor, effective at treating spontaneous autoimmune diabetes in nonobese diabetic (NOD) mice, can prevent diabetes secondary to PD-L1 blockade. Methods: Anti-PD-L1 antibody was injected into NOD mice to induce diabetes, and JAK1/JAK2 inhibitor LN3103801 was administered by oral gavage to prevent diabetes. Flow cytometry was used to study T cells and beta cells. Mesothelioma cells were inoculated into BALB/c mice to induce a transplantable tumour model. Results: Anti-PD-L1-induced diabetes was associated with increased immune cell infiltration in the islets and upregulated MHC class I on islet cells. Anti-PD-L1 administration significantly increased islet T cell proliferation and islet-specific CD8+ T cell numbers in peripheral lymphoid organs. JAK1/JAK2 inhibitor treatment blocked IFNγ-mediated MHC class I upregulation on beta cells and T cell proliferation mediated by cytokines that use the common γ chain receptor. As a result, anti-PD-L1-induced diabetes was prevented by JAK1/JAK2 inhibitor administered before or after checkpoint inhibitor therapy. Diabetes was also reversed when the JAK1/JAK2 inhibitor was administered after the onset of anti-PD-L1-induced hyperglycaemia. Furthermore, JAK1/JAK2 inhibitor intervention after checkpoint inhibitors did not reverse or abrogate the antitumour effects in a transplantable tumour model. Conclusion: A JAK1/JAK2 inhibitor can prevent and reverse anti-PD-L1-induced diabetes by blocking IFNγ and γc cytokine activities. Our study provides preclinical validation of JAK1/JAK2 inhibitor use in checkpoint inhibitor-induced diabetes.

4.
Nature ; 602(7895): 156-161, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34847567

RESUMO

CD8 T cell-mediated autoimmune diseases result from the breakdown of self-tolerance mechanisms in autoreactive CD8 T cells1. How autoimmune T cell populations arise and are sustained, and the molecular programmes defining the autoimmune T cell state, are unknown. In type 1 diabetes, ß-cell-specific CD8 T cells destroy insulin-producing ß-cells. Here we followed the fate of ß-cell-specific CD8 T cells in non-obese diabetic mice throughout the course of type 1 diabetes. We identified a stem-like autoimmune progenitor population in the pancreatic draining lymph node (pLN), which self-renews and gives rise to pLN autoimmune mediators. pLN autoimmune mediators migrate to the pancreas, where they differentiate further and destroy ß-cells. Whereas transplantation of as few as 20 autoimmune progenitors induced type 1 diabetes, as many as 100,000 pancreatic autoimmune mediators did not. Pancreatic autoimmune mediators are short-lived, and stem-like autoimmune progenitors must continuously seed the pancreas to sustain ß-cell destruction. Single-cell RNA sequencing and clonal analysis revealed that autoimmune CD8 T cells represent unique T cell differentiation states and identified features driving the transition from autoimmune progenitor to autoimmune mediator. Strategies aimed at targeting the stem-like autoimmune progenitor pool could emerge as novel and powerful immunotherapeutic interventions for type 1 diabetes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/imunologia , Células-Tronco/patologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/transplante , Autorrenovação Celular , Células Clonais/imunologia , Células Clonais/metabolismo , Células Clonais/patologia , Modelos Animais de Doenças , Feminino , Glucose-6-Fosfatase/imunologia , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Células Secretoras de Insulina/patologia , Linfonodos/imunologia , Masculino , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Análise de Célula Única , Transplante de Células-Tronco , Células-Tronco/imunologia , Células-Tronco/metabolismo , Transcriptoma
5.
Cleft Palate Craniofac J ; 58(12): 1517-1525, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33535807

RESUMO

OBJECTIVE: To describe the incidence and timing of provider-specific interventions for children with isolated cleft palate. DESIGN: This was a retrospective cohort study involving review of medical records. SETTING: Multidisciplinary team care clinic at a tertiary academic children's hospital between January 2000 and July 2019. PATIENTS: Patients with isolated nonsyndromic cleft palate seen by an American Cleft Palate-Craniofacial Association-approved team; 138 children were included. MAIN OUTCOME MEASURES: Study outcomes included incidence of secondary velopharyngeal management, tympanostomy tube insertion, speech therapy, hearing loss, dental/orthodontic treatment, and psychology interventions. Provider-specific outcomes were calculated for patients at ages 0 to 3, 3 to 5, and >5 years. RESULTS: Median follow-up time was 7.0 years (interquartile range: 3.3-11.8 years). At their last team assessment, 42% of patients still had conductive hearing loss. The rate of tympanostomy tube insertions not done alongside a palatoplasty was highest for ages 3 to 5 and dropped after new American Academy of Otolaryngology-Head and Neck Surgery Foundation guidelines in 2013 (P = .015); 54% of patients received speech-language therapy during follow-up. Palatoplasty, psychology, and dental/orthodontic treatment were all less common than speech or ENT treatment (P < .01). Secondary palatoplasty was performed in 31 patients (22%). Patients who received speech, dental/orthodontic, or psychology intervention followed up longer than those who did not (9.8 vs 2.1 years, P < .001). CONCLUSION: Half of the patients terminated team follow-up by age 7, suggesting that burden of care outweighed perceived benefits of continued follow-up for many families. These results can be used to adjust protocols for children with isolated cleft palate.


Assuntos
Fissura Palatina , Insuficiência Velofaríngea , Criança , Pré-Escolar , Fissura Palatina/cirurgia , Humanos , Recém-Nascido , Ventilação da Orelha Média , Equipe de Assistência ao Paciente , Estudos Retrospectivos , Fala , Resultado do Tratamento , Insuficiência Velofaríngea/cirurgia
6.
Nature ; 571(7764): 270-274, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31207604

RESUMO

Tumour-specific CD8 T cell dysfunction is a differentiation state that is distinct from the functional effector or memory T cell states1-6. Here we identify the nuclear factor TOX as a crucial regulator of the differentiation of tumour-specific T (TST) cells. We show that TOX is highly expressed in dysfunctional TST cells from tumours and in exhausted T cells during chronic viral infection. Expression of TOX is driven by chronic T cell receptor stimulation and NFAT activation. Ectopic expression of TOX in effector T cells in vitro induced a transcriptional program associated with T cell exhaustion. Conversely, deletion of Tox in TST cells in tumours abrogated the exhaustion program: Tox-deleted TST cells did not upregulate genes for inhibitory receptors (such as Pdcd1, Entpd1, Havcr2, Cd244 and Tigit), the chromatin of which remained largely inaccessible, and retained high expression of transcription factors such as TCF-1. Despite their normal, 'non-exhausted' immunophenotype, Tox-deleted TST cells remained dysfunctional, which suggests that the regulation of expression of inhibitory receptors is uncoupled from the loss of effector function. Notably, although Tox-deleted CD8 T cells differentiated normally to effector and memory states in response to acute infection, Tox-deleted TST cells failed to persist in tumours. We hypothesize that the TOX-induced exhaustion program serves to prevent the overstimulation of T cells and activation-induced cell death in settings of chronic antigen stimulation such as cancer.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular/imunologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Homeodomínio/metabolismo , Neoplasias/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/deficiência , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Homeodomínio/genética , Humanos , Memória Imunológica , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos , Neoplasias/patologia , Fenótipo , Receptores de Antígenos de Linfócitos T/imunologia , Transcrição Gênica
7.
J Mol Endocrinol ; 59(4): 325-337, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28827413

RESUMO

Type 1 diabetes (T1D) is characterized by the destruction of insulin-producing ß-cells by immune cells in the pancreas. Pro-inflammatory including TNF-α, IFN-γ and IL-1ß are released in the islet during the autoimmune assault and signal in ß-cells through phosphorylation cascades, resulting in pro-apoptotic gene expression and eventually ß-cell death. Protein tyrosine phosphatases (PTPs) are a family of enzymes that regulate phosphorylative signalling and are associated with the development of T1D. Here, we observed expression of PTPN6 and PTPN1 in human islets and islets from non-obese diabetic (NOD) mice. To clarify the role of these PTPs in ß-cells/islets, we took advantage of CRISPR/Cas9 technology and pharmacological approaches to inactivate both proteins. We identify PTPN6 as a negative regulator of TNF-α-induced ß-cell death, through JNK-dependent BCL-2 protein degradation. In contrast, PTPN1 acts as a positive regulator of IFN-γ-induced STAT1-dependent gene expression, which enhanced autoimmune destruction of ß-cells. Importantly, PTPN1 inactivation by pharmacological modulation protects ß-cells and primary mouse islets from cytokine-mediated cell death. Thus, our data point to a non-redundant effect of PTP regulation of cytokine signalling in ß-cells in autoimmune diabetes.


Assuntos
Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Animais , Morte Celular/genética , Morte Celular/imunologia , Expressão Gênica , Técnicas de Inativação de Genes , Marcação de Genes , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas Tirosina Fosfatases/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Apoptosis ; 21(4): 379-89, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26758067

RESUMO

Cell death via FAS/CD95 can occur either by activation of caspases alone (extrinsic) or by activation of mitochondrial death signalling (intrinsic) depending on the cell type. The BH3-only protein BID is activated in the BCL-2-regulated or mitochondrial apoptosis pathway and acts as a switch between the extrinsic and intrinsic cell death pathways. We have previously demonstrated that islets from BID-deficient mice are protected from FAS ligand-mediated apoptosis in vitro. However, it is not yet known if BID plays a similar role in human beta cell death. We therefore aimed to test the role of BID in human islet cell apoptosis immediately after isolation from human cadaver donors, as well as after de-differentiation in vitro. Freshly isolated human islets or 10-12 day cultured human islet cells exhibited BID transcript knockdown after BID siRNA transfection, however they were not protected from FAS ligand-mediated cell death in vitro as determined by DNA fragmentation analysis using flow cytometry. On the other hand, the same cells transfected with siRNA for FAS-associated via death domain (FADD), a molecule in the extrinsic cell death pathway upstream of BID, showed significant reduction in cell death. De-differentiated islets (human islet-derived progenitor cells) also demonstrated similar results with no difference in cell death after BID knockdown as compared to scramble siRNA transfections. Our results indicate that BID-independent pathways are responsible for FAS-dependent human islet cell death. These results are different from those observed in mouse islets and therefore demonstrate potentially alternate pathways of FAS ligand-induced cell death in human and mouse islet cells.


Assuntos
Apoptose/fisiologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteína Ligante Fas/metabolismo , Proteína de Domínio de Morte Associada a Fas/genética , Células Secretoras de Insulina/metabolismo , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Caspases/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 1/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Receptor fas/metabolismo
9.
Immunol Cell Biol ; 94(4): 334-41, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26446877

RESUMO

In type 1 diabetes, cytotoxic CD8(+) T lymphocytes (CTLs) directly interact with pancreatic beta cells through major histocompatibility complex class I. An immune synapse facilitates delivery of cytotoxic granules, comprised mainly of granzymes and perforin. Perforin deficiency protects the majority of non-obese diabetic (NOD) mice from autoimmune diabetes. Intriguingly perforin deficiency does not prevent diabetes in CD8(+) T-cell receptor transgenic NOD8.3 mice. We therefore investigated the importance of perforin-dependent killing via CTL-beta cell contact in autoimmune diabetes. Perforin-deficient CTL from NOD mice or from NOD8.3 mice were significantly less efficient at adoptive transfer of autoimmune diabetes into NODRag1(-/-) mice, confirming that perforin is essential to facilitate beta cell destruction. However, increasing the number of transferred in vitro-activated perforin-deficient 8.3 T cells reversed the phenotype and resulted in diabetes. Perforin-deficient NOD8.3 T cells were present in increased proportion in islets, and proliferated more in response to antigen in vivo indicating that perforin may regulate the activation of CTLs, possibly by controlling cytokine production. This was confirmed when we examined the requirement for direct interaction between beta cells and CD8(+) T cells in NOD8.3 mice, in which beta cells specifically lack major histocompatibility complex (MHC) class I through conditional deletion of ß2-microglobulin. Although diabetes was significantly reduced, 40% of these mice developed diabetes, indicating that NOD8.3 T cells can kill beta cells in the absence of direct interaction. Our data indicate that although perforin delivery is the main mechanism that CTL use to destroy beta cells, they can employ alternative mechanisms to induce diabetes in a perforin-independent manner.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica , Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/imunologia , Perforina/metabolismo , Animais , Autoantígenos/imunologia , Células Cultivadas , Citotoxicidade Imunológica/genética , Modelos Animais de Doenças , Humanos , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Comunicação Parácrina , Perforina/genética , Perforina/imunologia
10.
Diabetes ; 64(9): 3229-38, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25948683

RESUMO

Because regulatory T-cell (Treg) development can be induced by the same agonist self-antigens that induce negative selection, perturbation of apoptosis will affect both negative selection and Treg development. But how the processes of thymocyte deletion versus Treg differentiation bifurcate and their relative importance for tolerance have not been studied in spontaneous organ-specific autoimmune disease. We addressed these questions by removing a critical mediator of thymocyte deletion, BIM, in the NOD mouse model of autoimmune diabetes. Despite substantial defects in the deletion of autoreactive thymocytes, BIM-deficient NOD (NODBim(-/-)) mice developed less insulitis and were protected from diabetes. BIM deficiency did not impair effector T-cell function; however, NODBim(-/-) mice had increased numbers of Tregs, including those specific for proinsulin, in the thymus and peripheral lymphoid tissues. Increased levels of Nur77, CD5, GITR, and phosphorylated IκB-α in thymocytes from NODBim(-/-) mice suggest that autoreactive cells receiving strong T-cell receptor signals that would normally delete them escape apoptosis and are diverted into the Treg pathway. Paradoxically, in the NOD model, reduced thymic deletion ameliorates autoimmune diabetes by increasing Tregs. Thus, modulating apoptosis may be one of the ways to increase antigen-specific Tregs and prevent autoimmune disease.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Deleção Clonal/genética , Diabetes Mellitus Tipo 1/genética , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas/genética , Linfócitos T Reguladores/imunologia , Timócitos/imunologia , Animais , Proteínas Reguladoras de Apoptose/imunologia , Proteína 11 Semelhante a Bcl-2 , Antígenos CD5/metabolismo , Deleção Clonal/imunologia , Diabetes Mellitus Tipo 1/imunologia , Modelos Animais de Doenças , Proteína Relacionada a TNFR Induzida por Glucocorticoide/metabolismo , Proteínas I-kappa B/metabolismo , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos NOD , Inibidor de NF-kappaB alfa , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas/imunologia , Timócitos/metabolismo
11.
Methods Mol Biol ; 1292: 165-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25804755

RESUMO

Apoptosis of pancreatic beta cells is a feature of type 1 and type 2 diabetes, although by different effector mechanisms. In type 1 diabetes, beta cells are the targets of cytotoxic CD8(+) T cells that kill by releasing the contents of their cytotoxic granules into the immunological synapse with the target beta cell. In type 2 diabetes, the mechanisms of beta cell apoptosis are less clear, but believed to be due to cellular stresses including endoplasmic reticulum stress and oxidative stress induced by chronic exposure to high concentrations of glucose, lipids, inflammatory cytokines, or islet amyloid polypeptide. Measuring apoptosis in primary islets can be more difficult than in a beta cell line because islets exist as a cluster of cells and it is often difficult to obtain sufficient cells for any particular type of assay. Here, we describe two different methods for measuring islet cell apoptosis. The first method is the measurement of DNA fragmentation, a hallmark of apoptosis, of islets that have been cultured with reagents that induce stress. The second method is the measurement of islet lysis by activated cytotoxic T cells. We describe methods using mouse islets, but these can easily be adapted for human islets.


Assuntos
Células Secretoras de Insulina/metabolismo , Linfócitos T Citotóxicos/metabolismo , Animais , Apoptose/fisiologia , Linfócitos T CD8-Positivos/metabolismo , Fragmentação do DNA , Diabetes Mellitus Tipo 2/metabolismo , Citometria de Fluxo , Humanos , Camundongos , Estresse Oxidativo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA