Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 11(12)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34944535

RESUMO

Plasma membrane H+-ATPase is known to be detected in detergent-resistant sterol-enriched fractions, also called "raft" domains. Studies on H+-ATPase reconstituted in artificial or native membrane vesicles have shown both sterol-mediated stimulations and inhibitions of its activity. Here, using sealed isolated plasma membrane vesicles, we investigated the effects of sterol depletion in the presence of methyl-ß-cyclodextrin (MßCD) on H+-ATPase activity. The rate of ATP-dependent ∆µH+ generation and the kinetic parameters of ATP hydrolysis were evaluated. We show that the relative sterols content in membrane vesicles decreased gradually after treatment with MßCD and reached approximately 40% of their initial level in 30 mM probe solution. However, changes in the hydrolytic and H+-transport activities of the enzyme were nonlinear. The extraction of up to 20% of the initial sterols was accompanied by strong stimulation of ATP-dependent H+-transport in comparison with the hydrolytic activity of enzymes. Further sterol depletion led to a significant inhibition of active proton transport with an increase in passive H+-leakage. The solubilization of control and sterol-depleted vesicles in the presence of dodecyl maltoside negated the differences in the kinetics parameters of ATP hydrolysis, and all samples demonstrated maximal hydrolytic activities. The mechanisms behind the sensitivity of ATP-dependent H+-transport to sterols in the lipid environment of plasma membrane H+-ATPase are discussed.


Assuntos
Vesículas Extracelulares/metabolismo , Hidrogênio/metabolismo , Pisum sativum/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Esteróis/metabolismo , Trifosfato de Adenosina/química , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucosídeos/farmacologia , Hidrólise/efeitos dos fármacos , Transporte de Íons , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , beta-Ciclodextrinas/farmacologia
2.
Planta ; 253(1): 10, 2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389194

RESUMO

MAIN CONCLUSION: The plasma membrane H+-ATPase can be considered as a redox-dependent enzyme, because diamide-mediated inhibition of its hydrolytic and transport activities is accompanied by alkalization of the rhizosphere and retardation of root growth. Plasma membranes were isolated from roots of etiolated pea seedlings treated in the presence of an oxidant-diamide and an inhibitor of redox-sensitive protein phosphatase-phenylarsine oxide. Hydrolytic and proton transport activities of H+-ATPase were determined. The effects of diamide appeared in inhibition of both ATP hydrolysis and the proton transport. However, root treatment with phenylarsine oxide only slightly reduced Vmax, but did not affect ATP-dependent proton transport. The thiol groups of cysteines in the proteins can act as molecular targets for both compounds. However, treatment of isolated membranes with diamide or dithiothreitol did not have any effect on the H+ transport. It can be assumed that water-soluble diamide acts indirectly and its effects are not associated with oxidation of H+-ATPase cysteines. Therefore, plasmalemma was subjected to PEGylation-process where reduced cysteines available for PEG maleimide (5 kDa) were alkylated. Detection of such cysteines was carried out by Western blot analysis with anti-ATPase antibodies. It was found that shifts in the apparent molecular weight were detected only for denaturated proteins. These data suggest that available thiols are not localized on the enzyme surfaces. BN-PAGE analysis showed that the molecular weights of the ATPase complexes are almost identical in all samples. Therefore, oligomerization is probably not the reason for the inhibition of ATPase activity. Roots treated with these inhibitors in vivo exhibited stunted growth; however, a strong alkaline zone around the roots was formed only in the presence of diamide. Involvement of H+-ATPase redox regulation in this process is discussed.


Assuntos
Diamida , Pisum sativum , Raízes de Plantas , ATPases Translocadoras de Prótons , Membrana Celular/enzimologia , Diamida/farmacologia , Pisum sativum/enzimologia , Raízes de Plantas/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Plântula/efeitos dos fármacos , Plântula/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA