Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 317(3): H617-H626, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31298558

RESUMO

We previously described a novel "chemogenetic" animal model of heart failure that recapitulates a characteristic feature commonly found in human heart failure: chronic oxidative stress. This heart failure model uses a chemogenetic approach to activate a recombinant yeast d-amino acid oxidase in rat hearts in vivo to generate oxidative stress, which then rapidly leads to the development of a dilated cardiomyopathy. Here we apply this new model to drug testing by studying its response to treatment with the angiotensin II (ANG II) receptor blocker valsartan, administered either alone or with the neprilysin inhibitor sacubitril. Echocardiographic and [18F]fluorodeoxyglucose positron emission tomographic imaging revealed that valsartan in the presence or absence of sacubitril reverses the anatomical and metabolic remodeling induced by chronic oxidative stress. Markers of oxidative stress, mitochondrial function, and apoptosis, as well as classical heart failure biomarkers, also normalized following drug treatments despite the persistence of cardiac fibrosis. These findings provide evidence that chemogenetic heart failure is rapidly reversible by drug treatment, setting the stage for the study of novel heart failure therapeutics in this model. The ability of ANG II blockade and neprilysin inhibition to reverse heart failure induced by chronic oxidative stress identifies a central role for cardiac myocyte angiotensin receptors in the pathobiology of cardiac dysfunction caused by oxidative stress.NEW & NOTEWORTHY The chemogenetic approach allows us to distinguish cardiac myocyte-specific pathology from the pleiotropic changes that are characteristic of other "interventional" animal models of heart failure. These features of the chemogenetic heart failure model facilitate the analysis of drug effects on the progression and regression of ventricular remodeling, fibrosis, and dysfunctional signal transduction. Chemogenetic approaches will be highly informative in the study of the roles of redox stress in heart failure providing an opportunity for the identification of novel therapeutic targets.


Assuntos
Aminobutiratos/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Cardiomiopatia Dilatada/tratamento farmacológico , D-Aminoácido Oxidase/metabolismo , Proteínas Fúngicas/metabolismo , Peróxido de Hidrogênio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Tetrazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Compostos de Bifenilo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/fisiopatologia , D-Aminoácido Oxidase/genética , Dependovirus/genética , Modelos Animais de Doenças , Combinação de Medicamentos , Metabolismo Energético/efeitos dos fármacos , Proteínas Fúngicas/genética , Vetores Genéticos/administração & dosagem , Injeções Intravenosas , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neprilisina/antagonistas & inibidores , Regiões Promotoras Genéticas , Ratos Wistar , Troponina T/genética , Valsartana , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
2.
Eur Heart J ; 40(12): 967-978, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29668883

RESUMO

AIMS: Myocardial fibrosis is associated with profound changes in ventricular architecture and geometry, resulting in diminished cardiac function. There is currently no information on the role of the delta-like homologue 1 (Dlk1) in the regulation of the fibrotic response. Here, we investigated whether Dlk1 is involved in cardiac fibroblast-to-myofibroblast differentiation and regulates myocardial fibrosis and explored the molecular mechanism underpinning its effects in this process. METHODS AND RESULTS: Using Dlk1-knockout mice and adenoviral gene delivery, we demonstrate that overexpression of Dlk1 in cardio-fibroblasts resulted in inhibition of fibroblast proliferation and differentiation into myofibroblasts. This process is mediated by TGF-ß1 signalling, since isolated fibroblasts lacking Dlk1 exhibited a higher activation of the TGF-ß1/Smad-3 pathway at baseline, leading to an earlier acquisition of a myofibroblast phenotype. Likewise, Dlk1-null mice displayed increased TGF-ß1/Smad3 cardiac activity, resulting in infiltration/accumulation of myofibroblasts, induction and deposition of extra-domain A-fibronectin isoform and collagen, and activation of pro-fibrotic markers. Furthermore, these profibrotic events were associated with disrupted myofibril integrity, myocyte hypertrophy, and cardiac dysfunction. Interestingly, Dlk1 expression was down-regulated in ischaemic human and porcine heart tissues. Mechanistically, miR-370 mediated Dlk1's regulation of cardiac fibroblast-myofibroblast differentiation by directly targeting TGFß-R2/Smad-3 signalling, while the Dlk1 canonical target, Notch pathway, does not seem to play a role in this process. CONCLUSION: These findings are the first to demonstrate an inhibitory role of Dlk1 of cardiac fibroblast-to-myofibroblast differentiation by interfering with TGFß/Smad-3 signalling in the myocardium. Given the deleterious effects of continuous activation of this pathway, we propose Dlk1 as a new potential candidate for therapy in cases where aberrant TGFß signalling leads to chronic fibrosis.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Fibroblastos/metabolismo , Fibrose/genética , Miocárdio/patologia , Miofibroblastos/metabolismo , Animais , Diferenciação Celular , Regulação para Baixo , Humanos , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Proteína Smad3/genética , Suínos , Fator de Crescimento Transformador beta1/genética
3.
Acta Pharmacol Sin ; 39(7): 1133-1141, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29770800

RESUMO

Cardiac amyloidosis (CA) comprises a heterogeneous group of medical conditions affecting the myocardium. It presents with proteinaceous infiltration with variable degrees of severity, prevalence and evolution. Despite this heterogeneity, erroneous protein folding is the common pathophysiologic process, yielding the formation of a single misfolded protein (monomer) that progressively evolves and ultimately forms amyloid fibers. Additionally, by seeding out from the organs of origin, intermediates called oligomers metastasize and restart the process. Such self-echoing behavior makes the secondary affected organs as important as the primary ones. Unfortunately, CA can be clinically challenging and only suggestive in a late stage of its natural history, leaving a narrow therapeutic time window available. In light of the evolutionary nature of amyloidosis, here, we propose a new classification of the currently used biomarkers based on time stages with different specificity and applicability across CA subtypes. Early markers (free light chains, serum amyloid A, ß2-microglobulin, osteopontin and osteoprotegerin) can be employed for disease detection. Intermediate markers [soluble suppression of tumorigenicity 2 (sST-2), midregional proadrenomedullin (MR-proADM), von Willebrand factor (vWF), hepatocyte growth factor (HGF), matrix metalloproteinases (MMPs) and tissue inhibitor metalloproteinases (TIMPs)] can provide information on the biological mechanisms of myocardial damage. As in heart failure, late-stage biomarkers (troponins and natriuretic peptides) can help clinicians with prognosis and therapeutic response evaluation in CA. Such findings have generated a remarkable foundation for our current knowledge on CA. Nevertheless, we envision a future class of biomarkers targeted at upstream events capable of detecting folding defects, which will ultimately expand the therapeutic window.


Assuntos
Amiloidose/sangue , Cardiopatias/sangue , Osteopontina/sangue , Osteoprotegerina/sangue , Proteína Amiloide A Sérica/análise , Microglobulina beta-2/sangue , Biomarcadores/sangue , Humanos
4.
Cell Calcium ; 69: 46-61, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28747251

RESUMO

Intracellular calcium (Ca2+) is a critical coordinator of various aspects of cellular physiology. It is increasingly apparent that changes in cellular Ca2+ dynamics contribute to the regulation of normal and pathological signal transduction that controls cell growth and survival. Aberrant perturbations in Ca2+ homeostasis have been implicated in a range of pathological conditions, such as cardiovascular diseases, diabetes, tumorigenesis and steatosis hepatitis. Intracellular Ca2+ concentrations are therefore tightly regulated by a number of Ca2+ handling enzymes, proteins, channels and transporters located in the plasma membrane and in Ca2+ storage organelles, which work in concert to fine tune a temporally and spatially precise Ca2+ signal. Chief amongst them is the sarco/endoplasmic reticulum (SR/ER) Ca2+ ATPase pump (SERCA) which actively re-accumulates released Ca2+ back into the SR/ER, therefore maintaining Ca2+ homeostasis. There are at least 14 different SERCA isoforms encoded by three ATP2A1-3 genes whose expressions are species- and tissue-specific. Altered SERCA expression and activity results in cellular malignancy and induction of ER stress and ER stress-associated apoptosis. The role of SERCA misregulation in the control of apoptosis in various cell types and disease setting with prospective therapeutic implications is the focus of this review. Ca2+ is a double edge sword for both life as well as death, and current experimental evidence supports a model in which Ca2+ homeostasis and SERCA activity represent a nodal point that controls cell survival. Pharmacological or genetic targeting of this axis constitutes an incredible therapeutic potential to treat different diseases sharing similar biological disorders.


Assuntos
Apoptose , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Sinalização do Cálcio , Sobrevivência Celular , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia
5.
J Am Coll Cardiol ; 68(22): 2395-2407, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27908343

RESUMO

BACKGROUND: Individually, heart failure (HF) and Alzheimer's disease (AD) are severe threats to population health, and their potential coexistence is an alarming prospect. In addition to sharing analogous epidemiological and genetic profiles, biochemical characteristics, and common triggers, the authors recently recognized common molecular and pathological features between the 2 conditions. Whereas cognitive impairment has been linked to HF through perfusion defects, angiopathy, and inflammation, whether patients with AD present with myocardial dysfunction, and if the 2 conditions bear a common pathogenesis as neglected siblings are unknown. OBJECTIVES: Here, the authors investigated whether amyloid beta (Aß) protein aggregates are present in the hearts of patients with a primary diagnosis of AD, affecting myocardial function. METHODS: The authors examined myocardial function in a retrospective cross-sectional study from a cohort of AD patients and age-matched controls. Imaging and proteomics approaches were used to identify and quantify Aß deposits in AD heart and brain specimens compared with controls. Cell shortening and calcium transients were measured on isolated adult cardiomyocytes. RESULTS: Echocardiographic measurements of myocardial function suggest that patients with AD present with an anticipated diastolic dysfunction. As in the brain, Aß40 and Aß42 are present in the heart, and their expression is increased in AD. CONCLUSIONS: Here, the authors provide the first report of the presence of compromised myocardial function and intramyocardial deposits of Aß in AD patients. The findings depict a novel biological framework in which AD may be viewed either as a systemic disease or as a metastatic disorder leading to heart, and possibly multiorgan failure. AD and HF are both debilitating and life-threatening conditions, affecting enormous patient populations. Our findings underline a previously dismissed problem of a magnitude that will require new diagnostic approaches and treatments for brain and heart disease, and their combination.


Assuntos
Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/metabolismo , Cardiomiopatias/etiologia , Miocárdio/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Cardiomiopatias/diagnóstico , Cardiomiopatias/metabolismo , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Immunoblotting , Imuno-Histoquímica , Masculino , Microscopia Eletrônica de Transmissão , Miocárdio/ultraestrutura , Estudos Retrospectivos
6.
Microb Ecol ; 61(3): 582-94, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21258788

RESUMO

Novosphingobium sp. PP1Y, isolated from a surface seawater sample collected from a closed bay in the harbour of Pozzuoli (Naples, Italy), uses fuels as its sole carbon and energy source. Like some other Sphingomonads, this strain can grow as either planktonic free cells or sessile-aggregated flocks. In addition, this strain was found to grow as biofilm on several types of solid and liquid hydrophobic surfaces including polystyrene, polypropylene and diesel oil. Strain PP1Y is not able to grow on pure alkanes or alkane mixtures but is able to grow on a surprisingly wide range of aromatic compounds including mono, bi, tri and tetracyclic aromatic hydrocarbons and heterocyclic compounds. During growth on diesel oil, the organic layer is emulsified resulting in the formation of small biofilm-coated drops, whereas during growth on aromatic hydrocarbons dissolved in paraffin the oil layer is emulsified but the drops are coated only if the mixtures contain selected aromatic compounds, like pyrene, propylbenzene, tetrahydronaphthalene and heterocyclic compounds. These peculiar characteristics suggest strain PP1Y has adapted to efficiently grow at the water/fuel interface using the aromatic fraction of fuels as the sole carbon and energy source.


Assuntos
Adaptação Biológica , Carbono/metabolismo , Gasolina/microbiologia , Hidrocarbonetos Aromáticos/metabolismo , Sphingomonadaceae/metabolismo , Biodegradação Ambiental , DNA Bacteriano/genética , Itália , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Sphingomonadaceae/genética , Sphingomonadaceae/crescimento & desenvolvimento , Sphingomonadaceae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA