Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38906412

RESUMO

DARPP-32 (dopamine and cAMP-regulated phosphoprotein Mr. 32 kDa) is a phosphoprotein that is modulated by multiple receptors integrating intracellular pathways and playing roles in various physiological functions. It is regulated by dopaminergic receptors through the cAMP/protein kinase A (PKA) pathway, which modulates the phosphorylation of threonine 34 (Thr34). When phosphorylated at Thr34, DARPP-32 becomes a potent protein phosphatase-1 (PP1) inhibitor. Since dopamine is involved in the development of GABAergic neurons and DARPP-32 is expressed in the developing brain, it is possible that DARPP-32 has a role in GABAergic neuronal development. We cloned the zebrafish darpp-32 gene (ppp1r1b) gene and observed that it is evolutionarily conserved in its inhibitory domain (Thr34 and surrounding residues) and the docking motif (residues 7-11 (KKIQF)). We also characterized darpp-32 protein expression throughout the 5 days post-fertilization (dpf) zebrafish larval brain by immunofluorescence and demonstrated that darpp-32 is mainly expressed in regions that receive dopaminergic projections (pallium, subpallium, preoptic region, and hypothalamus). We demonstrated that dopamine acutely suppressed darpp-32 activity by reducing the levels of p-darpp-32 in the 5dpf zebrafish larval brain. In addition, the knockdown of darpp-32 resulted in a decrease in the number of GABAergic neurons in the subpallium of the 5dpf larval brain, with a concomitant increase in the number of DAergic neurons. Finally, we demonstrated that darpp-32 downregulation during development reduced the motor behavior of 5dpf zebrafish larvae. Thus, our observations suggest that darpp-32 is an evolutionarily conserved regulator of dopamine receptor signaling and is required for the formation of GABAergic neurons in the developing telencephalon.


Assuntos
Fosfoproteína 32 Regulada por cAMP e Dopamina , Dopamina , Neurônios GABAérgicos , Telencéfalo , Peixe-Zebra , Animais , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Neurônios GABAérgicos/metabolismo , Telencéfalo/metabolismo , Telencéfalo/embriologia , Dopamina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Animais Geneticamente Modificados , Regulação da Expressão Gênica no Desenvolvimento/fisiologia
2.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207050

RESUMO

The vertebrate retina develops from a specified group of precursor cells that adopt distinct identities and generate lineages of either the neural retina, retinal pigmented epithelium, or ciliary body. In some species, including teleost fish and amphibians, proliferative cells with stem-cell-like properties capable of continuously supplying new retinal cells post-embryonically have been characterized and extensively studied. This region, termed the ciliary or circumferential marginal zone (CMZ), possibly represents a conserved retinal stem cell niche. In this review, we highlight the research characterizing similar CMZ-like regions, or stem-like cells located at the peripheral margin, across multiple different species. We discuss the proliferative parameters, multipotency and growth mechanisms of these cells to understand how they behave in vivo and how different molecular factors and signalling networks converge at the CMZ niche to regulate their activity. The evidence suggests that the mature retina may have a conserved propensity for homeostatic growth and plasticity and that dysfunction in the regulation of CMZ activity may partially account for dystrophic eye growth diseases such as myopia and hyperopia. A better understanding of the properties of CMZ cells will enable important insight into how an endogenous generative tissue compartment can adapt to altered retinal physiology and potentially even restore vision loss caused by retinal degenerative conditions.


Assuntos
Retina/citologia , Retina/fisiologia , Nicho de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Suscetibilidade a Doenças , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Neurogênese , Organogênese , Neurônios Retinianos/citologia , Neurônios Retinianos/metabolismo , Epitélio Pigmentado da Retina , Vertebrados
3.
Prog Neurobiol ; 170: 99-114, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29902500

RESUMO

Neural stem and progenitor cells (NSPCs) are the primary source of new neurons in the brain and serve critical roles in tissue homeostasis and plasticity throughout life. Within the vertebrate brain, NSPCs are located within distinct neurogenic niches differing in their location, cellular composition, and proliferative behaviour. Heterogeneity in the NSPC population is hypothesized to reflect varying capacities for neurogenesis, plasticity and repair between different neurogenic zones. Since the discovery of adult neurogenesis, studies have predominantly focused on the behaviour and biological significance of adult NSPCs (aNSPCs) in rodents. However, compared to rodents, who show lifelong neurogenesis in only two restricted neurogenic niches, zebrafish exhibit constitutive neurogenesis across multiple stem cell niches that provide new neurons to every major brain division. Accordingly, zebrafish are a powerful model to probe the unique cellular and molecular profiles of NSPCs and investigate how these profiles govern tissue homeostasis and regenerative plasticity within distinct stem cell populations over time. Amongst the NSPC populations residing in the zebrafish central nervous system (CNS), proliferating radial-glia, quiescent radial-glia and neuro-epithelial-like cells comprise the majority. Here, we provide insight into the extent to which these distinct NSPC populations function and mature during development, respond to experience, and contribute to successful CNS regeneration in teleost fish. Together, our review brings to light the dynamic biological roles of these individual NSPC populations and showcases their diverse regenerative modes to achieve vertebrate brain repair later in life.


Assuntos
Células Ependimogliais/fisiologia , Células Epiteliais/fisiologia , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/fisiologia , Peixe-Zebra
4.
Stem Cell Reports ; 7(3): 454-470, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27546533

RESUMO

Proliferating progenitor cells undergo changes in competence to give rise to post-mitotic progeny of specialized function. These cell-fate transitions typically involve dynamic regulation of gene expression by histone methyltransferase (HMT) complexes. However, the composition, roles, and regulation of these assemblies in regulating cell-fate decisions in vivo are poorly understood. Using unbiased affinity purification and mass spectrometry, we identified the uncharacterized C2H2-like zinc finger protein ZNF644 as a G9a/GLP-interacting protein and co-regulator of histone methylation. In zebrafish, functional characterization of ZNF644 orthologs, znf644a and znf644b, revealed complementary roles in regulating G9a/H3K9me2-mediated gene silencing during neurogenesis. The non-overlapping requirements for znf644a and znf644b during retinal differentiation demarcate critical aspects of retinal differentiation programs regulated by differential G9a-ZNF644 associations, such as transitioning proliferating progenitor cells toward differentiation. Collectively, our data point to ZNF644 as a critical co-regulator of G9a/H3K9me2-mediated gene silencing during neuronal differentiation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Biomarcadores , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular/genética , Inativação Gênica , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Metilação , Neurônios/citologia , Neurônios/metabolismo , Fenótipo , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Retina/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra
5.
Dev Biol ; 402(2): 216-28, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25872183

RESUMO

Understanding the mechanisms that regulate the transition between the proliferative and a post-mitotic state of retinal progenitor cells (RPCs) is key to advancing our knowledge of retinal growth and maturation. In the present study we determined that during zebrafish embryonic retinal neurogenesis, two paired-type homeobox genes - vsx2 and dmbx1 - function in a mutually antagonistic manner. We demonstrate that vsx2 gene expression requires active Fgf signaling and that this in turn suppresses dmbx1 expression and maintains cells in an undifferentiated, proliferative RPC state. This vsx2-dependent RPC state can be prolonged cell-autonomously by knockdown of dmbx1, or it can be suppressed prematurely by the over-expression of dmbx1, which we show can inhibit vsx2 expression and lead to precocious neuronal differentiation. dmbx1 loss of function also results in altered expression of canonical cell cycle genes, and in particular up-regulation of ccnd1, which correlates with our previous finding of a prolonged RPC cell cycle. By knocking down ccnd1 and dmbx1 simultaneously, we show that RPCs can overcome this phenotype to exit the cell cycle on time and differentiate normally into retinal neurons. Collectively, our data provide novel insight into the mechanism that enables RPCs to exit the cell cycle through a previously unrecognized antagonistic interaction of two paired-type homeobox genes that are central regulators of an Fgf-vsx2-dmbx1-ccnd1 signaling axis.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Neurogênese/fisiologia , Retina/embriologia , Células-Tronco/fisiologia , Peixe-Zebra/embriologia , Animais , Western Blotting , Bromodesoxiuridina , Pontos de Checagem do Ciclo Celular/genética , Ciclina D1/metabolismo , Primers do DNA/genética , Proteínas do Olho/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Retina/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo
6.
PLoS One ; 7(7): e41033, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848425

RESUMO

Histone deacetylase (HDAC) proteins have a role in promoting neuronal survival in vitro, but the mechanism underlying this function has not been identified. Here we provide evidence that components of the neuronal microenvironment, including non-neuronal cells and defined culture media, can mitigate midbrain neuronal cell death induced by HDAC inhibitor treatment. Using microarrays we further identified gene expression changes taking place in non-neuronal cells as a result of HDAC inhibition. This analysis demonstrated that HDAC inhibitor treatment results in the down-regulation of immunity related signaling factors, in particular the Toll-like receptors (TLR). TLR signaling is active in cultured midbrain cells, yet blocking TLR receptors is not sufficient to cause neuronal cell death. In contrast, selective activation of this pathway using TLR ligands can modestly block the effects of HDAC inhibition. Furthermore, we observed that the negative effects of HDAC inhibitor treatment on neuronal survival could be more substantially blocked by the cytokine Interleukin-6 (IL-6), which is a major downstream target of TLR signaling. These data suggest that HDACs function to promote neuronal survival by activating a TLR and IL-6 dependent pathway.


Assuntos
Histona Desacetilases/metabolismo , Interleucina-6/biossíntese , Mesencéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Receptores Toll-Like/metabolismo , Animais , Sobrevivência Celular/fisiologia , Perfilação da Expressão Gênica , Histona Desacetilases/genética , Mesencéfalo/citologia , Camundongos , Neurônios/citologia , Análise de Sequência com Séries de Oligonucleotídeos
7.
Stem Cells Dev ; 21(15): 2838-51, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22594450

RESUMO

Inducing a stable and predictable program of neural cell fate in pluripotent cells in vitro is an important goal for utilizing these cells for modeling human disease mechanisms. However, the extent to which in vitro neural specification recapitulates in vivo neural specification remains to be fully established. We previously demonstrated that in the mouse embryo, activation of fibroblast growth factor (FGF) signalling promotes definitive neural stem cell (NSC) development through the upregulation of the transcription factor Zfhx1b. Here, we asked whether Zfhx1b is similarly required during neural lineage development of embryonic stem (ES) cells. Zfhx1b gene expression is rapidly upregulated in mouse ES cells cultured in a permissive neural-inducing environment, compared to ES cells in a standard pluripotency maintenance environment, and is potentiated by FGF signalling. However, overexpression of Zfhx1b in ES cells in maintenance conditions, containing serum and leukemia inhibitory factor (LIF), is sufficient to induce Sox1 expression, a marker found in neural precursors and to promote definitive NSC colony formation. Knockdown of Zfhx1b in ES cells using siRNA did not affect the initial transition of ES cells to a neural cell fate, but did diminish the ability of these neural cells to develop further into definitive NSCs. Thus, our findings using ES cells are congruent with evidence from mouse embryos and support a model, whereby intercellular FGF signaling induces Zfhx1b, which promotes the development of definitive NSCs subsequent to an initial neural specification event that is independent of this pathway.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , Proteínas de Homeodomínio/fisiologia , Células-Tronco Neurais/metabolismo , Proteínas Repressoras/fisiologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Padronização Corporal , Células Cultivadas , Técnicas de Cocultura , Células-Tronco Embrionárias/metabolismo , Fator 8 de Crescimento de Fibroblasto/fisiologia , Expressão Gênica , Glicoproteínas/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Fator Inibidor de Leucemia/fisiologia , Camundongos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Regulação para Cima , Homeobox 2 de Ligação a E-box com Dedos de Zinco
8.
J Comp Neurol ; 520(10): 2275-316, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22318736

RESUMO

A central goal of adult neurogenesis research is to characterize the cellular constituents of a neurogenic niche and to understand how these cells regulate the production of new neurons. Because the generation of adult-born neurons may be tightly coupled to their functional requirement, the organization and output of neurogenic niches may vary across different regions of the brain or between species. We have undertaken a comparative study of six (D, Vd, Vv, Dm, Dl, Ppa) periventricular zones (PVZs) harboring proliferative cells present in the adult forebrain of the zebrafish (Danio rerio), a species known to possess widespread neurogenesis throughout life. Using electron microscopy, we have documented for the first time the detailed cytoarchitecture of these zones, and propose a model of the cellular composition of pallial and subpallial PVZs, as well as a classification scheme for identifying morphologically distinct cell types. Immunolabeling of resin-embedded tissue confirmed the phenotype of three constitutively proliferating (bromodeoxyuridine [BrdU]+) cell populations, including a radial glial-like (type IIa) cell immunopositive for both S100ß and glutamine synthetase (GS). Our data revealed rostrocaudal differences in the density of distinct proliferative populations, and cumulative labeling studies suggested that the cell cycle kinetics of these populations are not uniform between PVZs. Although the peak numbers of differentiated neurons were generated after ~2 weeks among most PVZs, niche-specific decline in the number of newborn neurons in some regions occurred after 4 weeks. Our data suggest that the cytoarchitecture of neurogenic niches and the tempo of neuronal production are regionally distinct in the adult zebrafish forebrain.


Assuntos
Células-Tronco Adultas/fisiologia , Diferenciação Celular , Ventrículos Cerebrais/citologia , Neurogênese/fisiologia , Prosencéfalo/anatomia & histologia , Células-Tronco Adultas/ultraestrutura , Análise de Variância , Animais , Bromodesoxiuridina/metabolismo , Contagem de Células , Ciclo Celular , Movimento Celular/fisiologia , Proliferação de Células , Proteínas ELAV/metabolismo , Proteínas do Olho/metabolismo , Glutamato-Amônia Ligase/metabolismo , Proteínas de Homeodomínio/metabolismo , Microscopia Eletrônica , Proteínas do Tecido Nervoso/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Ácidos Siálicos/metabolismo , Peixe-Zebra/anatomia & histologia
9.
J Neurosci ; 31(14): 5512-25, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21471388

RESUMO

An imbalance in dopamine-mediated neurotransmission is a hallmark physiological feature of neuropsychiatric disorders, such as schizophrenia. Recent evidence demonstrates that dopamine D(2) receptors, which are the main target of antipsychotics, modulate the activity of the protein kinase Akt, which is known to be downregulated in the brain of patients with schizophrenia. Akt has an important role in the regulation of cellular processes that are critical for neurodevelopment, including gene transcription, cell proliferation, and neuronal migration. Thus, it is possible that during brain development, altered Akt-dependent dopamine signaling itself may lead to defects in neural circuit formation. Here, we used a zebrafish model to assess the direct impact of altered dopamine signaling on brain development and larval motor behavior. We demonstrate that D(2) receptor activation acutely suppresses Akt activity by decreasing the level of pAkt(Thr308) in the larval zebrafish brain. This D(2)-dependent reduction in Akt activity negatively regulates larval movement and is distinct from a D(1)-dependent pathway with opposing affects on motor behavior. In addition, we show that D(2)-dependent suppression of Akt activity causes a late onset change in GSK3b activity, a known downstream target of Akt signaling. Finally, altered D(2) receptor signaling, or direct inhibition of Akt activity, causes a significant decrease in the size of the GABAergic neuron population throughout most of the brain. Our observations suggest that D(2) receptor signaling suppresses Akt-GSK3b activity, which regulates GABAergic neuron development and motor behavior.


Assuntos
Encéfalo/citologia , Movimento/fisiologia , Neurônios/metabolismo , Proteína Oncogênica v-akt/metabolismo , Receptores de Dopamina D2/metabolismo , Transdução de Sinais/fisiologia , Ácido gama-Aminobutírico/metabolismo , Fatores Etários , Análise de Variância , Animais , Animais Geneticamente Modificados , Comportamento Animal , Benzilaminas/farmacologia , Encéfalo/crescimento & desenvolvimento , Proteína de Ligação a CREB/metabolismo , Contagem de Células , Dopamina/metabolismo , Dopamina/farmacologia , Dopaminérgicos/farmacologia , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática/métodos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/genética , Larva/fisiologia , Microscopia Confocal/métodos , Neurônios/efeitos dos fármacos , Fosforilação , Quinoxalinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Treonina/metabolismo , Fatores de Transcrição/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Peixe-Zebra
10.
Mol Cell Neurosci ; 47(2): 145-53, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21463685

RESUMO

Oxygen (O2) tension has emerged as a major regulator of stem cell (SC) biology. Low O2 concentrations that are toxic to mature cells can confer advantage to stem and early progenitors, while superoxide stress remains a constant threat in aerobic biology and may be partially avoided through sequestration of SCs in the relatively hypoxic stem or regenerative niche. Using primary retina-derived retinal progenitor cells (RPCs) and the R28 progenitor cell line in vitro, we show that RPCs are sensitive to hydrogen peroxide (H2O2) induced damage and resistant to moderate levels of low oxygen stress (1% O2). Under hypoxic conditions, multipotent RPCs upregulate Epo receptors, and Epo, along with insulin, protects against both superoxide- and severe hypoxia- (0.25% O2) induced apoptosis through activation of the canonical PI3K/Akt/mTOR pathway. This survival advantage is sensitive to inhibitors of PI3K and mTOR. We further demonstrate phosphorylation of the p70S6 ribosomal kinase, a downstream mediator of PI3K/Akt/mTOR and translational activator. Overall, these data confirm that RPCs are sensitive to superoxide stress and resistant to hypoxia and that this resistance is mediated in part by Epo. They further suggest that manipulation of RPCs ex vivo prior to ocular delivery, or the in vivo delivery of exogenous survival factors at the time of cell implantation, could enhance the success of regenerative therapies aimed to restore sight.


Assuntos
Hipóxia Celular/fisiologia , Sobrevivência Celular/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Retina/citologia , Células-Tronco/fisiologia , Superóxidos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Cultivadas , Eritropoetina/metabolismo , Eritropoetina/farmacologia , Peróxido de Hidrogênio/farmacologia , Insulina/metabolismo , Camundongos , Oxidantes/farmacologia , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Estresse Fisiológico
11.
Regen Med ; 1(5): 635-52, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17465732

RESUMO

Embryonic stem (ES) cells are a pluripotent and renewable cellular resource with tremendous potential for broad applications in regenerative medicine. Arguably the most important consideration for stem cell-based therapies is the ability to precisely direct the differentiation of stem cells along a preferred cellular lineage. During development, lineage commitment is a multistep process requiring the activation and repression of sets of genes at various stages, from an ES cell identity to a tissue-specific stem cell identity and beyond. Thus, the challenge is to ensure that the pattern of genomic regulation is recapitulated during the in vitro differentiation of ES cells into stem/progenitor cells of the appropriate tissue in a robust, predictable and stable manner. To address this issue, we must understand the ontogeny of tissue-specific stem cells during normal embryogenesis and compare the ontogeny of tissue-specific stem cells in ES cell models. Here, we discuss the issue of directed differentiation of pluripotent ES cells into neural stem cells, which is fundamentally linked to two early events in the development of the mammalian nervous system: the 'decision' of the ectoderm to acquire a neural identity (neural determination) and the origin of neural stem cells within this neural-committed population of cells. A clearer understanding of the molecular and cellular mechanisms that govern mammalian neural cell fate determination will lead to improved ES technology applications in neural regeneration.


Assuntos
Células-Tronco Embrionárias/citologia , Neurônios/citologia , Células-Tronco Pluripotentes/citologia , Animais , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Bovinos , Diferenciação Celular , Técnicas de Cocultura , Ectoderma/citologia , Ectoderma/metabolismo , Células-Tronco Embrionárias/fisiologia , Endoderma/citologia , Endoderma/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Previsões , Fator Inibidor de Leucemia/metabolismo , Camundongos , Modelos Neurológicos , Neurônios/fisiologia , Células-Tronco Pluripotentes/fisiologia , Soroalbumina Bovina/metabolismo , Transdução de Sinais , Vísceras/citologia , Vísceras/metabolismo
12.
Genes Dev ; 16(7): 846-58, 2002 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-11937492

RESUMO

Neural stem cells, which exhibit self-renewal and multipotentiality, are generated in early embryonic brains and maintained throughout the lifespan. The mechanisms of their generation and maintenance are largely unknown. Here, we show that neural stem cells are generated independent of RBP-Jkappa, a key molecule in Notch signaling, by using RBP-Jkappa(-/-) embryonic stem cells in an embryonic stem cell-derived neurosphere assay. However, Notch pathway molecules are essential for the maintenance of neural stem cells; they are depleted in the early embryonic brains of RBP-Jkappa(-/-) or Notch1(-/-) mice. Neural stem cells also are depleted in embryonic brains deficient for the presenilin1 (PS1) gene, a key regulator in Notch signaling, and are reduced in PS1(+/-) adult brains. Both neuronal and glial differentiation in vitro were enhanced by attenuation of Notch signaling and suppressed by expressing an active form of Notch1. These data are consistent with a role for Notch signaling in the maintenance of the neural stem cell, and inconsistent with a role in a neuronal/glial fate switch.


Assuntos
Proteínas de Membrana/metabolismo , Receptores de Superfície Celular , Fatores de Transcrição , Animais , Encéfalo/metabolismo , Bromodesoxiuridina/farmacologia , Ciclo Celular , Diferenciação Celular , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Imuno-Histoquímica , Camundongos , Microscopia de Fluorescência , Mutação , Neurônios/metabolismo , Presenilina-1 , Prosencéfalo/metabolismo , Ligação Proteica , Receptor Notch1 , Receptores Notch , Retroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA