Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 4(1): 1374, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880419

RESUMO

Huntington's disease results from expansion of a glutamine-coding CAG tract in the huntingtin (HTT) gene, producing an aberrantly functioning form of HTT. Both wildtype and disease-state HTT form a hetero-dimer with HAP40 of unknown functional relevance. We demonstrate in vivo and in cell models that HTT and HAP40 cellular abundance are coupled. Integrating data from a 2.6 Å cryo-electron microscopy structure, cross-linking mass spectrometry, small-angle X-ray scattering, and modeling, we provide a near-atomic-level view of HTT, its molecular interaction surfaces and compacted domain architecture, orchestrated by HAP40. Native mass spectrometry reveals a remarkably stable hetero-dimer, potentially explaining the cellular inter-dependence of HTT and HAP40. The exon 1 region of HTT is dynamic but shows greater conformational variety in the polyglutamine expanded mutant than wildtype exon 1. Our data provide a foundation for future functional and drug discovery studies targeting Huntington's disease and illuminate the structural consequences of HTT polyglutamine expansion.


Assuntos
Éxons , Proteína Huntingtina/genética , Doença de Huntington/genética , Proteínas Nucleares/genética , Peptídeos/metabolismo , Microscopia Crioeletrônica , Humanos , Proteína Huntingtina/metabolismo , Proteína Huntingtina/ultraestrutura , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura
2.
Hum Mol Genet ; 30(8): 706-715, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33772540

RESUMO

Spinocerebellar Ataxia Type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the ataxin-1 protein. Recent genetic correlational studies have implicated DNA damage repair pathways in modifying the age at onset of disease symptoms in SCA1 and Huntington's Disease, another polyglutamine expansion disease. We demonstrate that both endogenous and transfected ataxin-1 localizes to sites of DNA damage, which is impaired by polyglutamine expansion. This response is dependent on ataxia-telangiectasia mutated (ATM) kinase activity. Further, we characterize an ATM phosphorylation motif within ataxin-1 at serine 188. We show reduction of the Drosophila ATM homolog levels in a ATXN1[82Q] Drosophila model through shRNA or genetic cross ameliorates motor symptoms. These findings offer a possible explanation as to why DNA repair was implicated in SCA1 pathogenesis by past studies. The similarities between the ataxin-1 and the huntingtin responses to DNA damage provide further support for a shared pathogenic mechanism for polyglutamine expansion diseases.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Ataxina-1/genética , Dano ao DNA , Ataxias Espinocerebelares/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ataxina-1/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Drosophila/genética , Drosophila/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Microscopia Confocal , Mutação , Peptídeos/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genética , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia , Repetições de Trinucleotídeos/genética
3.
J Huntingtons Dis ; 10(1): 165-173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33579859

RESUMO

The use of genome wide association studies (GWAS) in Huntington's disease (HD) research, driven by unbiased human data analysis, has transformed the focus of new targets that could affect age at onset. While there is a significant depth of information on DNA damage repair, with many drugs and drug targets, most of this development has taken place in the context of cancer therapy. DNA damage repair in neurons does not rely on DNA replication correction mechanisms. However, there is a strong connection between DNA repair and neuronal metabolism, mediated by nucleotide salvaging and the poly ADP-ribose (PAR) response, and this connection has been implicated in other age-onset neurodegenerative diseases. Validation of leads including the mismatch repair protein MSH3, and interstrand cross-link repair protein FAN1, suggest the mechanism is driven by somatic CAG instability, which is supported by the protective effect of CAA substitutions in the CAG tract. We currently do not understand: how somatic instability is triggered; the state of DNA damage within expanding alleles in the brain; whether this damage induces mismatch repair and interstrand cross-link pathways; whether instability mediates toxicity, and how this relates to human ageing. We discuss DNA damage pathways uncovered by HD GWAS, known roles of other polyglutamine disease proteins in DNA damage repair, and a panel of hypotheses for pathogenic mechanisms.


Assuntos
Reparo do DNA/genética , Estudo de Associação Genômica Ampla , Instabilidade Genômica/genética , Doença de Huntington/genética , Ataxias Espinocerebelares/genética , Humanos
4.
Mol Psychiatry ; 26(9): 5441-5463, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32514103

RESUMO

Huntington's disease (HD) is a monogenic neurodegenerative disorder resulting from a mutation in the huntingtin gene. This leads to the expression of the mutant huntingtin protein (mHTT) which provokes pathological changes in both the central nervous system (CNS) and periphery. Accumulating evidence suggests that mHTT can spread between cells of the CNS but here, we explored the possibility that mHTT could also propagate and cause pathology via the bloodstream. For this, we used a parabiosis approach to join the circulatory systems of wild-type (WT) and zQ175 mice. After surgery, we observed mHTT in the plasma and circulating blood cells of WT mice and post-mortem analyses revealed the presence of mHTT aggregates in several organs including the liver, kidney, muscle and brain. The presence of mHTT in the brain was accompanied by vascular abnormalities, such as a reduction of Collagen IV signal intensity and altered vessel diameter in the striatum, and changes in expression of Glutamic acid decarboxylase 65/67 (GAD65-67) in the cortex. Conversely, we measured reduced pathology in zQ175 mice by decreased mitochondrial impairments in peripheral organs, restored vessel diameter in the cortex and improved expression of Dopamine- and cAMP-regulated phosphoprotein 32 (DARPP32) in striatal neurons. Collectively, these results demonstrate that circulating mHTT can disseminate disease, but importantly, that healthy blood can dilute pathology. These findings have significant implications for the development of therapies in HD.


Assuntos
Doença de Huntington , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo
5.
Mol Biol Cell ; 29(23): 2809-2820, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30256717

RESUMO

The huntingtin protein participates in several cellular processes that are disrupted when the polyglutamine tract is expanded beyond a threshold of 37 CAG DNA repeats in Huntington's disease (HD). Cellular biology approaches to understand these functional disruptions in HD have primarily focused on cell lines with synthetically long CAG length alleles that clinically represent outliers in this disease and a more severe form of HD that lacks age onset. Patient-derived fibroblasts are limited to a finite number of passages before succumbing to cellular senescence. We used human telomerase reverse transcriptase (hTERT) to immortalize fibroblasts taken from individuals of varying age, sex, disease onset, and CAG repeat length, which we have termed TruHD cells. TruHD cells display classic HD phenotypes of altered morphology, size and growth rate, increased sensitivity to oxidative stress, aberrant adenosine diphosphate/adenosine triphosphate (ADP/ATP) ratios, and hypophosphorylated huntingtin protein. We additionally observed dysregulated reactive oxygen species (ROS)-dependent huntingtin localization to nuclear speckles in HD cells. We report the generation and characterization of a human, clinically relevant cellular model for investigating disease mechanisms in HD at the single-cell level, which, unlike transformed cell lines, maintains functions critical for huntingtin transcriptional regulation and genomic integrity.


Assuntos
Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Adulto , Sequência de Bases/genética , Encéfalo/metabolismo , Linhagem Celular/metabolismo , Senescência Celular/genética , Feminino , Fibroblastos/metabolismo , Humanos , Doença de Huntington/fisiopatologia , Cariotipagem , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Fenótipo , Cultura Primária de Células , Telomerase , Repetições de Trinucleotídeos/genética , Repetições de Trinucleotídeos/fisiologia
6.
Proc Natl Acad Sci U S A ; 110(36): 14610-5, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23898200

RESUMO

Huntington disease (HD) is a neurodegenerative disorder caused by a CAG expansion within the huntingtin gene that encodes a polymorphic glutamine tract at the amino terminus of the huntingtin protein. HD is one of nine polyglutamine expansion diseases. The clinical threshold of polyglutamine expansion for HD is near 37 repeats, but the mechanism of this pathogenic length is poorly understood. Using Förster resonance energy transfer, we describe an intramolecular proximity between the N17 domain and the downstream polyproline region that flanks the polyglutamine tract of huntingtin. Our data support the hypothesis that the polyglutamine tract can act as a flexible domain, allowing the flanking domains to come into close spatial proximity. This flexibility is impaired with expanded polyglutamine tracts, and we can detect changes in huntingtin conformation at the pathogenic threshold for HD. Altering the structure of N17, either via phosphomimicry or with small molecules, also affects the proximity between the flanking domains. The structural capacity of N17 to fold back toward distal regions within huntingtin requires an interacting protein, protein kinase C and casein kinase 2 substrate in neurons 1 (PACSIN1). This protein has the ability to bind both N17 and the polyproline region, stabilizing the interaction between these two domains. We also developed an antibody-based FRET assay that can detect conformational changes within endogenous huntingtin in wild-type versus HD fibroblasts. Therefore, we hypothesize that wild-type length polyglutamine tracts within huntingtin can form a flexible domain that is essential for proper functional intramolecular proximity, conformations, and dynamics.


Assuntos
Doença de Huntington/genética , Proteínas do Tecido Nervoso/genética , Peptídeos/genética , Expansão das Repetições de Trinucleotídeos/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sítios de Ligação/genética , Linhagem Celular , Células Cultivadas , Éxons/genética , Feminino , Transferência Ressonante de Energia de Fluorescência , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Masculino , Camundongos , Microscopia de Fluorescência , Pessoa de Meia-Idade , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica
7.
Proc Natl Acad Sci U S A ; 109(9): 3528-33, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22331905

RESUMO

Huntington disease (HD) is a progressive neurodegenerative monogenic disorder caused by expansion of a polyglutamine stretch in the huntingtin (Htt) protein. Mutant huntingtin triggers neural dysfunction and death, mainly in the corpus striatum and cerebral cortex, resulting in pathognomonic motor symptoms, as well as cognitive and psychiatric decline. Currently, there is no effective treatment for HD. We report that intraventricular infusion of ganglioside GM1 induces phosphorylation of mutant huntingtin at specific serine amino acid residues that attenuate huntingtin toxicity, and restores normal motor function in already symptomatic HD mice. Thus, our studies have identified a potential therapy for HD that targets a posttranslational modification of mutant huntingtin with critical effects on disease pathogenesis.


Assuntos
Gangliosídeo G(M1)/uso terapêutico , Atividade Motora/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Animais , Códon/efeitos dos fármacos , Corpo Estriado/metabolismo , Dimerização , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/biossíntese , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Avaliação Pré-Clínica de Medicamentos , Gangliosídeo G(M1)/administração & dosagem , Proteína Huntingtina , Bombas de Infusão Implantáveis , Infusões Parenterais , Camundongos , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/análise , Desempenho Psicomotor/efeitos dos fármacos
8.
J Am Chem Soc ; 131(25): 9094-9, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19496598

RESUMO

In this paper, we report the formation of protein based liquid droplets resulting in the formation of in vivo microcompartments in E. coli or tobacco cells. These microcompartments were generated by expressing elastin-like polypeptides (ELP), which have the ability to undergo a reversible phase transition, resulting in the formation of an aqueous two-phase system (ATPS) in the cytoplasm of the cell. We prove that these microcompartments are liquid by expressing a fusion protein consisting of ELP and GFP and by performing fluorescence recovery after photobleaching (FRAP) experiments at different stages of cell cultivation. In the initial phases of cell growth, the fusion protein concentration is low and is not sufficient to drive the formation of a second aqueous phase. As the intracellular fusion protein concentration increases with longer cultivation time, droplets start forming, and as protein expression continues, the droplets coalesce at the poles of the E. coli cells. FRAP experiments with cells at different growth stages reveals that the protein in these ELP based droplets is comprised of aqueous and not solid aggregates, as seen in typical inclusion bodies. Staining of the ribosomes and coimaging of the ELP-GFP fusion protein showed that these compartments exclude the protein making machinery of the cell, acting as depots for newly formed protein. It is also shown, in vitro, that ELP based droplets result in the exclusion of proteases, protecting proteins from degradation. Additional studies are still required to test this possibility in vivo. To the best of our knowledge, this is the first report characterizing the formation of an engineered extra aqueous phase in a living organism.


Assuntos
Elastina/análise , Elastina/metabolismo , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/metabolismo , Elastina/genética , Elastina/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/isolamento & purificação , Transição de Fase , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Trombina/metabolismo , Água/química
10.
FEBS J ; 275(17): 4252-62, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18637947

RESUMO

After the successful cloning of the first gene for a polyglutamine disease in 1991, the expanded polyglutamine tract in the nine polyglutamine disease proteins became an obvious therapeutic target. Early hypotheses were that misfolded, precipitated protein could be a universal pathogenic mechanism. However, new data are accumulating on Huntington's disease and other polyglutamine diseases that appear to contradict the toxic aggregate hypothesis. Recent data suggest that the toxic species of protein in these diseases may be soluble mutant conformers, and that the protein context of expanded polyglutamine is critical to understanding disease specificity. Here we discuss recent publications that define other important therapeutic targets for polyglutamine-mediated neurodegeneration related to the context of the expanded polyglutamine tract in the disease protein.


Assuntos
Doença de Huntington/patologia , Humanos , Doença de Huntington/genética , Modelos Teóricos , Peptídeos/genética
11.
J Biol Chem ; 282(41): 30150-60, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17646170

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is a polyglutamine (polyQ) disorder characterized by specific degeneration of cerebellar, brainstem, and retinal neurons. Although they share little sequence homology, proteins implicated in polyQ disorders have common properties beyond their characteristic polyQ tract. These include the production of proteolytic fragments, nuclear accumulation, and processing by caspases. Here we report that ataxin-7 is cleaved by caspase-7, and we map two putative caspase-7 cleavage sites to Asp residues at positions 266 and 344 of the ataxin-7 protein. Site-directed mutagenesis of these two caspase-7 cleavage sites in the polyQ-expanded form of ataxin-7 produces an ataxin-7 D266N/D344N protein that is resistant to caspase cleavage. Although ataxin-7 displays toxicity, forms nuclear aggregates, and represses transcription in human embryonic kidney 293T cells in a polyQ length-dependent manner, expression of the non-cleavable D266N/D344N form of polyQ-expanded ataxin-7 attenuated cell death, aggregate formation, and transcriptional interference. Expression of the caspase-7 truncation product of ataxin-7-69Q or -92Q, which removes the putative nuclear export signal and nuclear localization signals of ataxin-7, showed increased cellular toxicity. We also detected N-terminal polyQ-expanded ataxin-7 cleavage products in SCA7 transgenic mice similar in size to those generated by caspase-7 cleavage. In a SCA7 transgenic mouse model, recruitment of caspase-7 into the nucleus by polyQ-expanded ataxin-7 correlated with its activation. Our results, thus, suggest that proteolytic processing of ataxin-7 by caspase-7 may contribute to SCA7 disease pathogenesis.


Assuntos
Caspase 7/metabolismo , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/genética , Transcrição Gênica , Animais , Ataxina-7 , Células COS , Linhagem Celular , Cerebelo/metabolismo , Chlorocebus aethiops , Humanos , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/fisiologia , Peptídeos/metabolismo
12.
Prog Neurobiol ; 83(4): 211-27, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17240517

RESUMO

There are nine genetic neurodegenerative diseases caused by a similar genetic defect, a CAG DNA triplet-repeat expansion in the disease gene's open reading frame resulting in a polyglutamine expansion in the disease proteins. Despite the commonality of polyglutamine expansion, each of the polyglutamine diseases manifest as unique diseases, with some similarities, but important differences. These differences suggest that the context of the polyglutamine expansion is important to the mechanism of pathology of the disease proteins. Therefore, it is becoming increasingly paramount to understand the normal functions of these polyglutamine disease proteins, which include huntingtin, the polyglutamine-expanded protein in Huntington's disease (HD). Transcriptional dysregulation is seen in HD. Here we discuss the role of normal huntingtin in transcriptional regulation and misregulation in Huntington's disease in relation to potentially analogous model systems, and to other polyglutamine disease proteins. Huntingtin has functional roles in both the cytoplasm and the nucleus. One commonality of activity of polyglutamine disease proteins is at the level of protein dynamics and ability to import and export to and from the nucleus. Knowing the temporal location of huntingtin protein in response to signaling and neuronal communication could lead to valuable insights into an important trigger of HD pathology.


Assuntos
Núcleo Celular/metabolismo , Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Transcrição Gênica/fisiologia , Transporte Ativo do Núcleo Celular , Glutamina/metabolismo , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Peptídeos/metabolismo
13.
Can J Neurol Sci ; 33(3): 278-91, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17001815

RESUMO

Since the early 1990s, DNA triplet repeat expansions have been found to be the cause in an ever increasing number of genetic neurologic diseases. A subset of this large family of genetic diseases has the expansion of a CAG DNA triplet in the open reading frame of a coding exon. The result of this DNA expansion is the expression of expanded glutamine amino acid repeat tracts in the affected proteins, leading to the term, Polyglutamine Diseases, which is applied to this sub-family of diseases. To date, nine distinct genes are known to be linked to polyglutamine diseases, including Huntington's disease, Machado-Joseph Disease and spinobulbar muscular atrophy or Kennedy's disease. Most of the polyglutamine diseases are characterized clinically as spinocerebellar ataxias. Here we discuss recent successes and advancements in polyglutamine disease research, comparing these different diseases with a common genetic flaw at the level of molecular biology and early drug design for a family of diseases where many new research tools for these genetic disorders have been developed. Polyglutamine disease research has successfully used interdisciplinary collaborative efforts, informative multiple mouse genetic models and advanced tools of pharmaceutical industry research to potentially serve as the prototype model of therapeutic research and development for rare neurodegenerative diseases.


Assuntos
Expansão das Repetições de DNA , Doenças Neurodegenerativas/genética , Peptídeos/genética , Animais , Ataxina-1 , Ataxinas , Sequência de Bases , Canadá , Humanos , Proteína Huntingtina , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Doenças Neurodegenerativas/terapia , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Complexo de Endopeptidases do Proteassoma/metabolismo , Conformação Proteica , Receptores Androgênicos/metabolismo , Transdução de Sinais/fisiologia
14.
J Biol Chem ; 281(5): 2730-9, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16314424

RESUMO

Spinocerebellar ataxia type 7 is a progressive neurodegenerative disorder caused by a CAG DNA triplet repeat expansion leading to an expanded polyglutamine tract in the ataxin-7 protein. Ataxin-7 appears to be a transcription factor and a component of the STAGA transcription coactivator complex. Here, using live cell imaging and inverted fluorescence recovery after photobleaching, we demonstrate that ataxin-7 has the ability to export from the nucleus via the CRM-1/exportin pathway and that ataxin-7 contains a classic leucine-type nuclear export signal (NES). We have precisely defined the location of this NES in ataxin-7 and found it to be fully conserved in all vertebrate species. Polyglutamine expansion was seen to reduce the nuclear export rate of mutant ataxin-7 relative to wild-type ataxin-7. Subtle point mutation of the NES in polyglutamine expanded ataxin-7 increased toxicity in primary cerebellar neurons in a polyglutamine length-dependent manner in the context of full-length ataxin-7. Our results add ataxin-7 to a growing list of polyglutamine disease proteins that are capable of nuclear shuttling, and we define an activity of ataxin-7 in the STAGA complex of trafficking between the nucleus and cytoplasm.


Assuntos
Transporte Ativo do Núcleo Celular , Carioferinas/química , Proteínas do Tecido Nervoso/metabolismo , Sinais de Exportação Nuclear , Receptores Citoplasmáticos e Nucleares/química , Células 3T3 , Animais , Ataxina-7 , Doenças Cerebelares/metabolismo , Cerebelo/citologia , Sequência Conservada , Humanos , Camundongos , Neurônios/metabolismo , Sinais de Exportação Nuclear/genética , Peptídeos/farmacologia , Mutação Puntual , Fatores de Transcrição , Transfecção , Proteína Exportina 1
15.
Oncogene ; 23(33): 5632-42, 2004 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-15184878

RESUMO

The TSLC1 tumor-suppressor gene is silenced in a number of human cancer tissues and cell lines, including lung, prostate, liver, stomach, pancreatic, and breast cancers. Expression of TSLC1 in a non-small-cell lung cancer (NSCLC) cell line A549 suppresses tumorigenicity in nude mice. However, the molecular mechanism of TSLC1 action is not yet elucidated. In the present study, we show that the expression of TSLC1 from a recombinant adenovirus vector (Ad-TSLC1) inhibited cell proliferation and induced apoptosis in the NSCLC cell line A549. We also demonstrated that subcutaneous tumor growth in nude mice induced by A549 cells was suppressed to the extent of 70-80% by intratumoral injection of Ad-TSLC1. Re-expression of TSLC1 also resulted in activation of the apoptotic protease caspase-3, accompanied by the cleavage of its substrate poly (ADP-ribose) polymerase (PARP). The antiproliferative and pro-apoptotic activity of TSLC1 required the presence of the FERM-binding and PDZ-interacting motifs located in the cytoplasmic domain. Our results demonstrate the pro-apoptotic and oncosuppressive activity of TSLC1 protein, and suggest the potential of TSLC1 for gene therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Adenoviridae/genética , Animais , Apoptose , Divisão Celular , Genes Supressores de Tumor , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Transfecção , Células Tumorais Cultivadas
16.
Hum Mol Genet ; 12(12): 1393-403, 2003 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12783847

RESUMO

Huntington's disease (HD), is a genetic neurodegenerative disease characterized by a DNA CAG triplet repeat expansion in the first exon of the disease gene, HD. CAG DNA expansion results in a polyglutamine tract expansion in mutant huntingtin protein. Wild-type and mutant full-length huntingtin have been detected in the nucleus, but elevated levels of mutant huntingtin and huntingtin amino-terminal proteolytic fragments are seen to accumulate in the nuclei of HD-affected neurons. The presence of huntingtin in both the nucleus and the cytoplasm suggested that huntingtin may be dynamic between these compartments. By live cell time-lapse video microscopy, we have been able to visualize polyglutamine-mediated aggregation and the transient nuclear localization of huntingtin over time in a striatal cell line. A classical nuclear localization signal could not be detected in huntingtin, but we have discovered a nuclear export signal (NES) in the carboxy-terminus of huntingtin. Leptomycin B treatment of clonal striatal cells enhanced the nuclear localization of huntingtin, and a mutant NES huntingtin displayed increased nuclear localization, indicating that huntingtin can shuttle to and from the nucleus. The huntingtin NES is strictly conserved among all huntingtin proteins from diverse species. This export signal may be important in Huntington's disease because this fragment of huntingtin is proteolytically cleaved away during HD. The huntingtin NES therefore defines a potential role for huntingtin as a member of a nucleocytoplasmic dynamic protein complex.


Assuntos
Núcleo Celular/metabolismo , Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/patologia , Sobrevivência Celular , Sequência Conservada , Citoplasma/patologia , Células HeLa , Humanos , Proteína Huntingtina , Microscopia de Vídeo , Neurônios/patologia , Sinais de Localização Nuclear , Peptídeos/genética , Transporte Proteico , Deleção de Sequência , Expansão das Repetições de Trinucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA