Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673914

RESUMO

Plant viral nanoparticles (VNPs) are attractive to nanomedicine researchers because of their safety, ease of production, resistance, and straightforward functionalization. In this paper, we developed and successfully purified a VNP derived from turnip mosaic virus (TuMV), a well-known plant pathogen, that exhibits a high affinity for immunoglobulins G (IgG) thanks to its functionalization with the Z domain of staphylococcal Protein A via gene fusion. We selected cetuximab as a model IgG to demonstrate the versatility of this novel TuMV VNP by developing a fluorescent nanoplatform to mark tumoral cells from the Cal33 line of a tongue squamous cell carcinoma. Using confocal microscopy, we observed that fluorescent VNP-cetuximab bound selectively to Cal33 and was internalized, revealing the potential of this nanotool in cancer research.


Assuntos
Nanopartículas , Humanos , Nanopartículas/química , Linhagem Celular Tumoral , Potyvirus , Imunoglobulina G/metabolismo , Cetuximab/farmacologia , Cetuximab/química , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo
2.
Viruses ; 15(2)2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36851591

RESUMO

Plant viral nanoparticles (VNPs) have become an attractive platform for the development of novel nanotools in the last years because of their safety, inexpensive production, and straightforward functionalization. Turnip mosaic virus (TuMV) is one example of a plant-based VNP used as a nanobiotechnological platform either as virions or as virus-like particles (VLPs). Their functionalization mainly consists of coating their surface with the molecules of interest via chemical conjugation or genetic fusion. However, because of their limitations, these two methods sometimes result in non-viable constructs. In this paper, we applied the SpyTag/SpyCatcher technology as an alternative for the functionalization of TuMV VLPs with peptides and proteins. We chose as molecules of interest the green fluorescent protein (GFP) because of its good traceability, as well as the vasoactive intestinal peptide (VIP), given the previous unsuccessful attempts to functionalize TuMV VNPs by other methods. The successful conjugation of VLPs to GFP and VIP using SpyTag/SpyCatcher was confirmed through Western blot and electron microscopy. Moreover, the isopeptide bond between SpyTag and SpyCatcher occurred in vivo in co-agroinfiltrated Nicotiana benthamiana plants. These results demonstrated that SpyTag/SpyCatcher improves TuMV functionalization compared with previous approaches, thus implying the expansion of the application of the technology to elongated flexuous VNPs.


Assuntos
Nanopartículas , Potyvirus , Western Blotting , Proteínas de Fluorescência Verde
3.
Virus Res ; 252: 58-67, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29778701

RESUMO

Papillomaviruses (Family: Papillomaviridae) are small non-enveloped viruses that cause skin and mucosa infections in diverse vertebrates. The vast majority have been detected in mammals. However, the number of papillomaviruses described in birds is growing, especially because of metagenomic studies. Seven complete genomes and one partial sequence have been described, corresponding to five papillomavirus genera. These have been detected from various sample types, including skin, internal epithelium, and faecal material, from seven highly diverse wild and captive avian species. This review summarizes the molecular epidemiology of avian papillomaviruses, their genomic organization, evolutionary history and diagnostic techniques used for detection. The most commonly detected avian papillomavirus lesions are cauliflower-shaped papillomas, or warts, found on the tarsus and digits of common chaffinch (Fringilla coelebs) and occasionally brambling (Fringilla montifringilla). Similar warty growths have been detected in African grey parrot (Psittacus erithacus) and northern fulmar (Fulmarus glacialis), on the head and the foot, respectively. Papillomavirus has also been detected in avian tissue with no apparent lesions, similar to findings in humans and other mammals. Papillomavirus involvement was initially suspected to cause other types of lesions, such as internal papillomatosis of parrots (IPP) and proliferative pododermatitis in waterfowl. However, determined efforts failed to demonstrate papillomavirus presence. We briefly describe avian papillomavirus genomic organization and viral gene diversity. Furthermore, we performed a detailed analysis of avian papillomavirus non-coding regions and a preliminary computational analysis of their E9 proteins.


Assuntos
Aves/virologia , Genoma Viral , Papillomaviridae/classificação , Infecções por Papillomavirus/veterinária , Animais , DNA Viral/genética , Genes Virais , Variação Genética , Genótipo , Proteínas Oncogênicas Virais/genética , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/diagnóstico , Filogenia
4.
Vet Res Commun ; 42(2): 111-120, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29446002

RESUMO

Papillomaviruses are non-enveloped, DNA viruses that infect skin and mucosa of a wide variety of vertebrates, causing neoplasias or simply persisting asymptomatically. Avian papillomaviruses, with six fully sequenced genomes, are the second most studied group after mammalian papillomaviruses. In this study, we describe the first oral avian papillomavirus, detected in the tongue of a dead Yorkshire canary (Serinus canaria) and in oral swabs of the same bird and other two live canaries from an aviary in Madrid, Spain. Its genome is 8,071 bp and presents the canonical papillomavirus architecture with six early (E6, E7, E1, E9, E2, E4) and two late open reading frames (L1 and L2) and a long control region between L1 and E6. This new avian papillomavirus L1 gene shares a 64% pairwise identity with FcPV1 L1, so it has been classified as a new species (ScPV1) within the Ethapapillomavirus genus. Although the canary died after showing breathing problems, there is no evidence that the papillomavirus caused those symptoms so it could be part of the oral microbiota of the birds. Hence, future investigations are needed to evaluate the clinical relevance of the virus.


Assuntos
Doenças das Aves/virologia , Canários , Genoma Viral/genética , Papillomaviridae/genética , Infecções por Papillomavirus/veterinária , Animais , DNA Viral/genética , Boca/virologia , Papillomaviridae/classificação , Infecções por Papillomavirus/virologia , Homologia de Sequência do Ácido Nucleico , Espanha , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA