Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1301: 342448, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553120

RESUMO

BACKGROUND: The incorporation of bimetallic magnetic ionic liquids (MILs) in microextraction methods is an emerging trend due to the improved magnetic susceptibility offered by these solvents, which relies on the presence of metallic components in both the cation and the anion. This feature favors easy magnetic separation of these solvents in analytical sample preparation strategies. However, reported liquid-phase microextraction methods based on bimetallic MILs still present an important drawback in that the MILs are highly viscous, making a dispersive solvent during the microextraction procedure necessary, while also requiring a tedious back-extraction step prior to the chromatographic analysis. RESULTS: We propose for the first time a new generation of ultra-low viscosity bimetallic MILs composed of two paramagnetic Mn(II) complexes characterized by their easy usage in dispersive liquid-liquid microextraction (DLLME). The approach does not require dispersive solvent and the MIL-DLLME setup was directly combined with high-performance liquid chromatography (HPLC) and fluorescence detection (FD), without any back-extraction step. The approach was evaluated for the determination of five monohydroxylated polycyclic aromatic hydrocarbons, as carcinogenic biomarkers, in human urine. Optimum conditions of the MIL-DLLME method included the use of a low MIL volume (75 µL), a short extraction time (5 min), and no need of any dispersive solvent neither NaCl. The method presented limits of detection down to 7.50 ng L-1, enrichment factors higher than 17, and provided inter-day relative standard deviation lower than 11%. Analysis of urine samples was successfully performed, with biomarker content found at levels between 0.24 and 7.8 ng mL-1. SIGNIFICANCE: This study represents the first liquid-phase microextraction method using the new generation of low-viscous bimetallic MILs. The proposed MIL-DLLME approach represents 2 important advances with respect to previous methods employing bimetallic MILs: 1) no dispersive solvent is required, and 2) direct injection of the MIL in the HPLC is possible after minor dilution (no back extraction steps are required). Therefore, the microextraction strategy is simple, rapid, and consumes very small amounts of energy.

2.
Talanta ; 196: 420-428, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30683387

RESUMO

For the first time, an in situ stir bar dispersive liquid-liquid microextraction approach has been developed and coupled with headspace gas chromatography-mass spectrometry for the determination of a group of organic pollutants. The method exploits a new generation of magnetic ionic liquids (MILs) that contain paramagnetic cations based on Ni2+ or Co2+ metal centers coordinated with either N-butylimidazole or N-octylimidazole ligands and chloride anions. The reactants are added to an aqueous solution containing a high field neodymium rod magnet, followed by the addition of the bis[(trifluoromethyl)sulfonyl]imide anion that promotes a metathesis reaction for the in situ generation of a hydrophobic MIL. Concurrently, a high stirring rate is maintained to exceed the magnetic field of the rod magnet and disperse the generated MIL in the sample solution. When stirring is stopped, the MIL coats the rod magnet due to its paramagnetic nature, facilitating the MIL transfer and subsequent desorption and analysis. Under optimum conditions, the method required a 2.5-18% (w/v) aqueous solution of sodium chloride, 10 mL of sample, 20 or 30 mg of MIL, the addition of a small volume of dispersive solvent, and stirring for 5-7.5 min, depending on the MIL. The method provided limits of detection (LODs) down to 10 µg L-1, adequate reproducibility (with relative standard deviation values lower than 10% for a spiked level of 80 µg L-1), and relative recoveries between 72.5% and 102%. Furthermore, the method was successfully applied in the analysis of tap and mineral water.

3.
J Sep Sci ; 41(15): 3081-3088, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29809301

RESUMO

An ionic-liquid-based in situ dispersive liquid-liquid microextraction method coupled to headspace gas chromatography and mass spectrometry was developed for the rapid analysis of ultraviolet filters. The chemical structures of five ionic liquids were specifically designed to incorporate various functional groups for the favorable extraction of the target analytes. Extraction parameters including ionic liquid mass, molar ratio of ionic liquid to metathesis reagent, vortex time, ionic strength, pH, and total sample volume were studied and optimized. The effect of the headspace temperature and volume during the headspace sampling step was also evaluated to increase the sensitivity of the method. The optimized procedure is fast as it only required ∼7-10 min per extraction and allowed for multiple extractions to be performed simultaneously. In addition, the method exhibited high precision, good linearity, and low limits of detection for six ultraviolet filters in aqueous samples. The developed method was applied to both pool and lake water samples attaining acceptable relative recovery values.

4.
Anal Chim Acta ; 934: 106-13, 2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27506350

RESUMO

This work describes the applicability of magnetic ionic liquids (MILs) in the analytical determination of a group of heavy polycyclic aromatic hydrocarbons. Three different MILs, namely, benzyltrioctylammonium bromotrichloroferrate (III) (MIL A), methoxybenzyltrioctylammonium bromotrichloroferrate (III) (MIL B), and 1,12-di(3-benzylbenzimidazolium) dodecane bis[(trifluoromethyl)sulfonyl)]imide bromotrichloroferrate (III) (MIL C), were designed to exhibit hydrophobic properties, and their performance examined in a microextraction method for hydrophobic analytes. The magnet-assisted approach with these MILs was performed in combination with high performance liquid chromatography and fluorescence detection. The study of the extraction performance showed that MIL A was the most suitable solvent for the extraction of polycyclic aromatic hydrocarbons and under optimum conditions the fast extraction step required ∼20 µL of MIL A for 10 mL of aqueous sample, 24 mmol L(-1) NaOH, high ionic strength content of NaCl (25% (w/v)), 500 µL of acetone as dispersive solvent, and 5 min of vortex. The desorption step required the aid of an external magnetic field with a strong NdFeB magnet (the separation requires few seconds), two back-extraction steps for polycyclic aromatic hydrocarbons retained in the MIL droplet with n-hexane, evaporation and reconstitution with acetonitrile. The overall method presented limits of detection down to 5 ng L(-1), relative recoveries ranging from 91.5 to 119%, and inter-day reproducibility values (expressed as relative standard derivation) lower than 16.4% for a spiked level of 0.4 µg L(-1) (n = 9). The method was also applied for the analysis of real samples, including tap water, wastewater, and tea infusion.


Assuntos
Líquidos Iônicos/química , Microextração em Fase Líquida , Hidrocarbonetos Policíclicos Aromáticos/análise , Fenômenos Magnéticos , Estrutura Molecular , Solventes/química
5.
Anal Bioanal Chem ; 407(29): 8753-64, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26403236

RESUMO

The use of mixed hemimicelles of ionic liquid (IL)-based surfactants in a magnetic-based micro-dispersive solid-phase extraction (m-µdSPE) approach is described. Not only is the symmetric monocationic IL-based surfactant 1,3-didodecylimidazolium bromide (C12C12Im-Br) studied for first time in m-µdSPE, but double-salt (DS) IL (DSIL)-based surfactants are also examined. Nine DSIL-based surfactants were formed by combination of C12C12Im-Br with other IL-based surfactants, including nonsymmetric monocationic and dicationic ILs combined at three different molar fractions. The analytical application was focused on the determination of a group of eight phenols, including bisphenol A, in water samples. The best results were obtained with the DSIL formed by C12C12Im-Br (molar fraction 0.5) and 1-hexadecyl-3-methylimidazolium bromide (C16MIm-Br), after proper optimization of the overall method in combination with high-performance liquid chromatography (HPLC) and diode-array detection (DAD). The optimum conditions for 100 mL of water samples require a small amount (10 mg) of Fe3O4 magnetic nanoparticles, a low content (5.0 mg of C12C12Im-Br and 3.9 mg of C16MIm-Br) of the selected DSIL, pH 11, a sonication time of 2.5 min, and an equilibration time of 5 min with the aid of NdFeB magnets, followed by elution of phenols, evaporation, and reconstitution with 0.5 mL of acetonitrile. The overall m-µdSPE-HPLC-DAD method is characterized for limits of detection down to 1.3 µg · L(-1), intraday relative standard deviations lower than 13 % (n = 3), and interday relative standard deviations lower than 17 % (n = 9), with a spiking level of 15 µg · L(-1); with enrichment factors between 15.7 and 141, and average relative recoveries of 99.9 %.

6.
Anal Bioanal Chem ; 407(16): 4615-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25925853

RESUMO

Four different crosslinked polymeric ionic liquid (PIL)-based sorbent coatings were evaluated in an automated direct-immersion solid-phase microextraction method (automated DI-SPME) in combination with gas chromatography (GC). The crosslinked PIL coatings were based on vinyl-alkylimidazolium- (ViCnIm-) or vinylbenzyl-alkylimidazolium- (ViBzCnIm-) IL monomers, and di-(vinylimidazolium)dodecane ((ViIm)2C12-) or di-(vinylbenzylimidazolium)dodecane ((ViBzIm)2C12-) dicationic IL crosslinkers. In addition, a PIL-based hybrid coating containing multi-walled carbon nanotubes (MWCNTs) was also studied. The studied PIL coatings were covalently attached to derivatized nitinol wires and mounted onto the Supelco assembly to ensure automation when acting as SPME coatings. Their behavior was evaluated in the determination of a group of water pollutants, after proper optimization. A comparison was carried out with three common commercial SPME fibers. It was observed that those PILs containing a benzyl group in their structures, either in the IL monomer and crosslinker (PIL-1-1) or only in the crosslinker (PIL-0-1), were the most efficient sorbents for the selected analytes. The validation of the overall automated DI-SPME-GC-flame ionization detector (FID) method gave limits of detection down to 135 µg · L(-1) for p-cresol when using the PIL-1-1 and down to 270 µg · L(-1) when using the PIL-0-1; despite their coating thickness: ~2 and ~5 µm, respectively. Average relative recoveries with waters were of 85 ± 14 % and 87 ± 15 % for PIL-1-1 and PIL-0-1, respectively. Precision values as relative standard deviation were always lower than 4.9 and 7.6 % (spiked level between 10 and 750 µg · L(-1), as intra-day precision). Graphical Abstract Automated DI-SPME-GC-FID using crosslinked-PILs sorbent coatings for the determination of waterpollutants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA