Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Lipid Res ; 63(1): 100154, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838542

RESUMO

Cancer cells may depend on exogenous serine, depletion of which results in slower growth and activation of adaptive metabolic changes. We previously demonstrated that serine and glycine (SG) deprivation causes loss of sphingosine kinase 1 (SK1) in cancer cells, thereby increasing the levels of its lipid substrate, sphingosine (Sph), which mediates several adaptive biological responses. However, the signaling molecules regulating SK1 and Sph levels in response to SG deprivation have yet to be defined. Here, we identify 1-deoxysphinganine (dSA), a noncanonical sphingoid base generated in the absence of serine from the alternative condensation of alanine and palmitoyl CoA by serine palmitoyl transferase, as a proximal mediator of SG deprivation in SK1 loss and Sph level elevation upon SG deprivation in cancer cells. SG starvation increased dSA levels in vitro and in vivo and in turn induced SK1 degradation through a serine palmitoyl transferase-dependent mechanism, thereby increasing Sph levels. Addition of exogenous dSA caused a moderate increase in intracellular reactive oxygen species, which in turn decreased pyruvate kinase PKM2 activity while increasing phosphoglycerate dehydrogenase levels, and thereby promoted serine synthesis. We further showed that increased dSA induces the adaptive cellular and metabolic functions in the response of cells to decreased availability of serine likely by increasing Sph levels. Thus, we conclude that dSA functions as an initial sensor of serine loss, SK1 functions as its direct target, and Sph functions as a downstream effector of cellular and metabolic adaptations. These studies define a previously unrecognized "physiological" nontoxic function for dSA.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)
2.
FASEB J ; 35(2): e21284, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33484475

RESUMO

It has been well-established that cancer cells often display altered metabolic profiles, and recent work has concentrated on how cancer cells adapt to serine removal. Serine can be either taken exogenously or synthesized from glucose, and its regulation forms an important mechanism for nutrient integration. One of the several important metabolic roles for serine is in the generation of bioactive sphingolipids since it is the main substrate for serine palmitoyltransferase, the initial and rate-limiting enzyme in the synthesis of sphingolipids. Previously, serine deprivation has been connected to the action of the tumor suppressor p53, and we have previously published on a role for p53 regulating sphingosine kinase 1 (SK1), an enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P). SK1 is a key enzyme in sphingolipid synthesis that functions in pro-survival and tumor-promoting pathways and whose expression is also often elevated in cancers. Here we show that SK1 was degraded during serine starvation in a time and dose-dependent manner, which led to sphingosine accumulation. This was independent of effects on p53 but required the action of the proteasome. Furthermore, we show that overexpression of SK1, to compensate for SK1 loss, was detrimental to cell growth under conditions of serine starvation, demonstrating that the suppression of SK1 under these conditions is adaptive. Mitochondrial oxygen consumption decreased in response to SK1 degradation, and this was accompanied by an increase in intracellular reactive oxygen species (ROS). Suppression of ROS with N-acteylcysteine resulted in suppression of the metabolic adaptations and in decreased cell growth under serine deprivation. The effects of SK1 suppression on ROS were mimicked by D-erythro-sphingosine, whereas S1P was ineffective, suggesting that the effects of loss of SK1 were due to the accumulation of its substrate sphingosine. This study reveals a new mechanism for regulating SK1 levels and a link of SK1 to serine starvation as well as mitochondrial function.


Assuntos
Adaptação Fisiológica , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteólise , Serina/deficiência , Regulação para Baixo , Células HCT116 , Humanos , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina/metabolismo , Proteína Supressora de Tumor p53/metabolismo
3.
J Biomed Mater Res B Appl Biomater ; 108(3): 1141-1156, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31444959

RESUMO

The bioactive sphingolipid ceramide has many important roles in cell signaling processes, particularly in signaling programmed cell death in cancer. However, ceramide levels are often impaired in multi-drug resistant and radiation resistant cancers due to the dysregulation of ceramide metabolism. Restoration of ceramide levels through external delivery therefore represents a potential therapeutic target for the treatment of resistant cancers. However, as a lipid, ceramide is extremely hydrophobic and requires a delivery system to enter cells. Here we report the development of a method to load significant amounts of the long chain C16 and C24 ceramides onto oxidized graphene nanoribbons (O-GNRs) derived from carbon nanotubes. Using O-GNRs as a delivery system for these ceramides, we were able to induce significant biological effects in HeLa cells in conjunction with C6 ceramide and ultraviolet radiation treatment. However, we found that O-GNRs themselves exert significant biological effects and can interfere with the actions of these ceramides and ultraviolet treatment. Loading of ceramides onto O-GNRs did not have a significant effect on the entry of the nanoparticles into cells. Despite the need for further improvement, these data represent an important first step in the development of O-GNRs as a delivery system for long chain ceramides.


Assuntos
Carbono/química , Ceramidas/química , Grafite/química , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Apoptose , Sobrevivência Celular , Células HeLa , Humanos , Metabolismo dos Lipídeos , Espectrometria de Massas , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Oxigênio/química , Tamanho da Partícula , Transdução de Sinais/efeitos dos fármacos , Raios Ultravioleta
4.
J Biomed Mater Res A ; 107(1): 25-37, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30422374

RESUMO

Sphingolipids such as ceramide have attracted much attention as possible anticancer agents due to their potent pro-apoptotic effects. However, due to their extreme hydrophobicity, there is currently no clinically approved delivery method for in vivo use as a therapeutic agent. To this end, we have developed a novel method for loading the short-chain C6 ceramide onto oxidized graphene nanoribbons (O-GNRs) and graphene nanoplatelets (GNPs). Mass spectrometry revealed loading efficiencies of 57% and 51.5% for C6 ceramide onto O-GNRs and GNPs, respectively. The PrestoBlue viability assay revealed that 100 µg/mL of C6 ceramide-loaded O-GNRs and C6 ceramide-loaded GNPs reduced HeLa cell viability by approximately 93% and approximately 76%, respectively, compared to untreated HeLa cells, while equal concentrations of these nanoparticles without C6 ceramide did not significantly reduce HeLa cell viability. We confirmed that this cytotoxicity was apoptotic in nature via capase-3 activity and Hoechst staining. Using live-cell confocal imaging with the fluorescent NBD-ceramide loaded on O-GNRs, we observed robust uptake into HeLa cells within 30 min while NBD-ceramide on its own was uptaken much more rapidly. Transmission electron microscopy confirmed that C6 ceramide-loaded O-GNRs were actually entering cells. Taken together, these data show that O-GNRs are a promising delivery agent for ceramide. To our knowledge, this study is the first to use such a loading method. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 25-37, 2019.


Assuntos
Ceramidas , Materiais Revestidos Biocompatíveis , Sistemas de Liberação de Medicamentos , Grafite , Sobrevivência Celular/efeitos dos fármacos , Ceramidas/química , Ceramidas/farmacocinética , Ceramidas/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacocinética , Materiais Revestidos Biocompatíveis/farmacologia , Grafite/química , Grafite/farmacocinética , Grafite/farmacologia , Células HeLa , Humanos , Oxirredução
5.
FASEB J ; 30(12): 4159-4171, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27609772

RESUMO

Alterations in sphingolipid metabolism, especially ceramide and sphingosine 1-phosphate, have been linked to colon cancer, suggesting that enzymes of sphingolipid metabolism may emerge as novel regulators and targets in colon cancer. Neutral ceramidase (nCDase), a key enzyme in sphingolipid metabolism that hydrolyzes ceramide into sphingosine, is highly expressed in the intestine; however, its role in colon cancer has not been defined. Here we show that molecular and pharmacological inhibition of nCDase in colon cancer cells increases ceramide, and this is accompanied by decreased cell survival and increased apoptosis and autophagy, with minimal effects on noncancerous cells. Inhibition of nCDase resulted in loss of ß-catenin and inhibition of ERK, components of pathways relevant for colon cancer development. Furthermore, inhibition of nCDase in a xenograft model delayed tumor growth and increased ceramide while decreasing proliferation. It is noteworthy that mice lacking nCDase treated with azoxymethane were protected from tumor formation. Taken together, these studies show that nCDase is pivotal for regulating initiation and development of colon cancer, and these data suggest that this enzyme is a suitable and novel target for colon cancer therapy.-García-Barros, M., Coant, N., Kawamori, T., Wada, M., Snider, A. J., Truman, J.-P., Wu, B. X., Furuya, H., Clarke, C. J., Bialkowska, A. B., Ghaleb, A., Yang, V. W., Obeid, L. M., Hannun, Y. A. Role of neutral ceramidase in colon cancer.


Assuntos
Ceramidas/metabolismo , Neoplasias do Colo/enzimologia , Metabolismo dos Lipídeos/fisiologia , Ceramidase Neutra/metabolismo , Animais , Colo/metabolismo , Humanos , Masculino , Camundongos Knockout , Esfingolipídeos/metabolismo , beta Catenina/metabolismo
6.
Biochim Biophys Acta ; 1841(8): 1174-88, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24384461

RESUMO

Traditional methods of cancer treatment are limited in their efficacy due to both inherent and acquired factors. Many different studies have shown that the generation of ceramide in response to cytotoxic therapy is generally an important step leading to cell death. Cancer cells employ different methods to both limit ceramide generation and to remove ceramide in order to become resistant to treatment. Furthermore, sphingosine kinase activity, which phosphorylates sphingosine the product of ceramide hydrolysis, has been linked to multidrug resistance, and can act as a strong survival factor. This review will examine several of the most frequently used cancer therapies and their effect on both ceramide generation and the mechanisms employed to remove it. The development and use of inhibitors of sphingosine kinase will be focused upon as an example of how targeting sphingolipid metabolism may provide an effective means to improve treatment response rates and reduce associated treatment toxicity. This article is part of a Special Issue entitled Tools to study lipid functions.


Assuntos
Neoplasias/tratamento farmacológico , Esfingolipídeos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Resistencia a Medicamentos Antineoplásicos , Humanos , Células MCF-7 , Neoplasias/patologia
7.
Biochim Biophys Acta ; 1841(5): 773-82, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24060581

RESUMO

Colorectal cancer is one of the major causes of death in the western world. Despite increasing knowledge of the molecular signaling pathways implicated in colon cancer, therapeutic outcomes are still only moderately successful. Sphingolipids, a family of N-acyl linked lipids, have not only structural functions but are also implicated in important biological functions. Ceramide, sphingosine and sphingosine-1-phosphate are the most important bioactive lipids, and they regulate several key cellular functions. Accumulating evidence suggests that many cancers present alterations in sphingolipids and their metabolizing enzymes. The aim of this review is to discuss the emerging roles of sphingolipids, both endogenous and dietary, in colon cancer and the interaction of sphingolipids with WNT/ß-catenin pathway, one of the most important signaling cascades that regulate development and homeostasis in intestine. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.


Assuntos
Fenômenos Fisiológicos Celulares , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Homeostase/fisiologia , Esfingolipídeos/metabolismo , Animais , Humanos , Transdução de Sinais
8.
Immunology ; 136(1): 30-45, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22236141

RESUMO

Oxidized low-density lipoprotein (oxLDL) and oxLDL-containing immune complexes (oxLDL-IC) contribute to the formation of lipid-laden macrophages (foam cells). Fcγ receptors mediate uptake of oxLDL-IC, whereas scavenger receptors internalize oxLDL. We have previously reported that oxLDL-IC, but not free oxLDL, activate macrophages and prolong their survival. Sphingomyelin is a major constituent of cell membranes and lipoprotein particles and acid sphingomyelinase (ASMase) hydrolyses sphingomyelin to generate the bioactive lipid ceramide. ASMase exists in two forms: lysosomal (L-ASMase) and secretory (S-ASMase). In this study we examined whether oxLDL and oxLDL-IC regulate ASMase differently, and whether ASMase mediates monocyte/macrophage activation and cytokine release. The oxLDL-IC, but not oxLDL, induced early and consistent release of catalytically active S-ASMase. The oxLDL-IC also consistently stimulated L-ASMase activity, whereas oxLDL induced a rapid transient increase in L-ASMase activity before it steadily declined below baseline. Prolonged exposure to oxLDL increased L-ASMase activity; however, activity remained significantly lower than that induced by oxLDL-IC. Further studies were aimed at defining the function of the activated ASMase. In response to oxLDL-IC, heat-shock protein 70B' (HSP70B') was up-regulated and localized with redistributed ASMase in the endosomal compartment outside the lysosome. Treatment with oxLDL-IC induced the formation and release of HSP70-containing and IL-1ß-containing exosomes via an ASMase-dependent mechanism. Taken together, the results suggest that oxLDL and oxLDL-IC differentially regulate ASMase activity, and the pro-inflammatory responses to oxLDL-IC are mediated by prolonged activation of ASMase. These findings may contribute to increased understanding of mechanisms mediating macrophage involvement in atherosclerosis.


Assuntos
Citocinas/metabolismo , Lipoproteínas LDL/imunologia , Macrófagos/enzimologia , Macrófagos/imunologia , Fagocitose , Esfingomielina Fosfodiesterase/imunologia , Animais , Linhagem Celular , Citocinas/imunologia , Exossomos/imunologia , Exossomos/metabolismo , Humanos , Lisossomos/imunologia , Lisossomos/metabolismo , Macrófagos/metabolismo , Camundongos , Esfingomielina Fosfodiesterase/metabolismo
9.
Neurobiol Lipids ; 10: 2, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-24403911

RESUMO

Patients with post-traumatic stress disorder (PTSD) have greater risk of developing cardiovascular disease (CVD). While chronically elevated plasma cholesterol and pro-inflammatory cytokines levels increase CVD risk, several studies have shown that cholesterol reduction does not reduce CVD risk. Acid sphingomyelinase (ASMase) activation has been implicated in both CVD and major depressive disorder. We investigated plasma pro-inflammatory cytokine levels, ASMase activity, and changes in sphingolipids in PTSD patients compared to healthy controls. Levels of interleukin 6, interleukin 10, interferon-γ and tumor necrosis factor-α were higher in PTSD patients than controls. Plasma ASMase activity and sphingosine 1-phosphate were higher in the PTSD group (1.6-fold and 2-fold, respectively; p<0.05). The results suggest that CVD risk factors in PTSD patients remain high despite cholesterol reduction.

10.
Cell Mol Life Sci ; 68(20): 3293-305, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21533981

RESUMO

Macrophages play a central role in innate immune responses, in disposal of cholesterol, and in tissue homeostasis and remodeling. To perform these vital functions macrophages display high endosomal/lysosomal activities. Recent studies have highlighted that acid sphingomyelinase (ASMase), which generates ceramide from sphingomyelin, is involved in modulation of membrane structures and signal transduction in addition to its metabolic role in the lysosome. In this review, we bring together studies on ASMase, its different forms and locations that are necessary for the macrophage to accomplish its diverse functions. We also address the importance of ASMase to several disease processes that are mediated by activated macrophages.


Assuntos
Macrófagos/enzimologia , Esfingomielina Fosfodiesterase/metabolismo , Animais , Humanos
11.
PLoS One ; 5(9)2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20941382

RESUMO

BACKGROUND: While there is significant interest in combining anti-angiogenesis therapy with conventional anti-cancer treatment, clinical trials have as of yet yielded limited therapeutic gain, mainly because mechanisms of anti-angiogenic therapy remain to a large extent unknown. Currently, anti-angiogenic tumor therapy is conceptualized to either "normalize" dysfunctional tumor vasculature, or to prevent recruitment of circulating endothelial precursors into the tumor. An alternative biology, restricted to delivery of anti-angiogenics immediately prior to single dose radiotherapy (radiosurgery), is provided in the present study. METHODOLOGY/PRINCIPAL FINDINGS: Genetic data indicate an acute wave of ceramide-mediated endothelial apoptosis, initiated by acid sphingomyelinase (ASMase), regulates tumor stem cell response to single dose radiotherapy, obligatory for tumor cure. Here we show VEGF prevented radiation-induced ASMase activation in cultured endothelium, occurring within minutes after radiation exposure, consequently repressing apoptosis, an event reversible with exogenous C16-ceramide. Anti-VEGFR2 acts conversely, enhancing ceramide generation and apoptosis. In vivo, MCA/129 fibrosarcoma tumors were implanted in asmase+/+ mice or asmase−/− littermates and irradiated in the presence or absence of anti-VEGFR2 DC101 or anti-VEGF G6-31 antibodies. These anti-angiogenic agents, only if delivered immediately prior to single dose radiotherapy, de-repressed radiation-induced ASMase activation, synergistically increasing the endothelial apoptotic component of tumor response and tumor cure. Anti-angiogenic radiosensitization was abrogated in tumors implanted in asmase−/− mice that provide apoptosis-resistant vasculature, or in wild-type littermates pre-treated with anti-ceramide antibody, indicating that ceramide is necessary for this effect. CONCLUSIONS/SIGNIFICANCE: These studies show that angiogenic factors fail to suppress apoptosis if ceramide remains elevated while anti-angiogenic therapies fail without ceramide elevation, defining a ceramide rheostat that determines outcome of single dose radiotherapy. Understanding the temporal sequencing of anti-angiogenic drugs and radiation enables optimized radiosensitization and design of innovative radiosurgery clinical trials.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Endotélio/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Radiossensibilizantes/uso terapêutico , Animais , Anticorpos Monoclonais/uso terapêutico , Apoptose/efeitos dos fármacos , Bovinos , Linhagem Celular Tumoral , Ceramidas/metabolismo , Modelos Animais de Doenças , Endotélio/citologia , Endotélio/efeitos dos fármacos , Endotélio/efeitos da radiação , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Neoplasias/fisiopatologia , Dosagem Radioterapêutica , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
PLoS One ; 5(8): e12310, 2010 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-20808818

RESUMO

BACKGROUND: While there is significant interest in combining anti-angiogenesis therapy with conventional anti-cancer treatment, clinical trials have as of yet yielded limited therapeutic gain, mainly because mechanisms of anti-angiogenic therapy remain to a large extent unknown. Currently, anti-angiogenic tumor therapy is conceptualized to either "normalize" dysfunctional tumor vasculature, or to prevent recruitment of circulating endothelial precursors into the tumor. An alternative biology, restricted to delivery of anti-angiogenics immediately prior to single dose radiotherapy (radiosurgery), is provided in the present study. METHODOLOGY/PRINCIPAL FINDINGS: Genetic data indicate an acute wave of ceramide-mediated endothelial apoptosis, initiated by acid sphingomyelinase (ASMase), regulates tumor stem cell response to single dose radiotherapy, obligatory for tumor cure. Here we show VEGF prevented radiation-induced ASMase activation in cultured endothelium, occurring within minutes after radiation exposure, consequently repressing apoptosis, an event reversible with exogenous C(16)-ceramide. Anti-VEGFR2 acts conversely, enhancing ceramide generation and apoptosis. In vivo, MCA/129 fibrosarcoma tumors were implanted in asmase(+/+) mice or asmase(-/-) littermates and irradiated in the presence or absence of anti-VEGFR2 DC101 or anti-VEGF G6-31 antibodies. These anti-angiogenic agents, only if delivered immediately prior to single dose radiotherapy, de-repressed radiation-induced ASMase activation, synergistically increasing the endothelial apoptotic component of tumor response and tumor cure. Anti-angiogenic radiosensitization was abrogated in tumors implanted in asmase(-/-) mice that provide apoptosis-resistant vasculature, or in wild-type littermates pre-treated with anti-ceramide antibody, indicating that ceramide is necessary for this effect. CONCLUSIONS/SIGNIFICANCE: These studies show that angiogenic factors fail to suppress apoptosis if ceramide remains elevated while anti-angiogenic therapies fail without ceramide elevation, defining a ceramide rheostat that determines outcome of single dose radiotherapy. Understanding the temporal sequencing of anti-angiogenic drugs and radiation enables optimized radiosensitization and design of innovative radiosurgery clinical trials.


Assuntos
Membrana Celular/efeitos dos fármacos , Células Endoteliais/patologia , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Radiossensibilizantes/farmacologia , Radiocirurgia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Ceramidas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Camundongos , Neoplasias/metabolismo , Neoplasias/cirurgia , Radiossensibilizantes/uso terapêutico , Dosagem Radioterapêutica , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Esfingomielina Fosfodiesterase/metabolismo , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/imunologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
13.
Cancer Res ; 70(3): 957-67, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20086180

RESUMO

Acute endothelial cell apoptosis and microvascular compromise couple gastrointestinal tract irradiation to reproductive death of intestinal crypt stem cell clonogens (SCCs) following high-dose radiation. Genetic or pharmacologic inhibition of endothelial apoptosis prevents intestinal damage, but as the radiation dose is escalated, SCCs become directly susceptible to an alternate cell death mechanism, mediated via ceramide synthase (CS)-stimulated de novo synthesis of the proapoptotic sphingolipid ceramide, and p53-independent apoptosis of crypt SCCs. We previously reported that ataxia-telangiectasia mutated deficiency resets the primary radiation lethal pathway, allowing CS-mediated apoptosis at the low-dose range of radiation. The mechanism for this event, termed target reordering, remains unknown. Here, we show that inactivation of DNA damage repair pathways signals CS-mediated apoptosis in crypt SCCs, presumably via persistent unrepaired DNA double-strand breaks (DSBs). Genetic loss of function of sensors and transducers of DNA DSB repair confers the CS-mediated lethal pathway in intestines of sv129/B6Mre11(ATLD1/ATLD1) and C57BL/6(Prkdc/SCID) (severe combined immunodeficient) mice exposed to low-dose radiation. In contrast, CS-mediated SCC lethality was mitigated in irradiated gain-of-function Rad50(s/s) mice, and epistasis studies order Rad50 upstream of Mre11. These studies suggest unrepaired DNA DSBs as causative in target reordering in intestinal SCCs. As such, we provide an in vivo model of DNA damage repair that is standardized, can be exploited to understand allele-specific regulation in intact tissue, and is pharmacologically tractable.


Assuntos
Apoptose , Mucosa Intestinal/metabolismo , Oxirredutases/metabolismo , Células-Tronco/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Hidrolases Anidrido Ácido , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ceramidas/metabolismo , Quinase do Ponto de Checagem 2 , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epitélio/metabolismo , Epitélio/patologia , Epitélio/efeitos da radiação , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos da radiação , Jejuno/metabolismo , Jejuno/patologia , Jejuno/efeitos da radiação , Proteína Homóloga a MRE11 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Camundongos SCID , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/patologia , Células-Tronco/efeitos da radiação , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
14.
Cancer Biol Ther ; 8(1): 54-63, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19029835

RESUMO

We previously demonstrated that treatment of human androgen-responsive prostate cancer cell lines LNCaP and CWR22-Rv1 with 12-O-tetradecanoylphorbol 13-acetate (TPA), a known protein kinase C (PKC) activator, decreases ATM protein levels, thus de-repressing the enzyme ceramide synthase (CS) and promoting apoptosis as well as radio-sensitizing these cells.(1) Here we show that PKCalpha mediates the TPA effect on ATM expression, since ATM suppression and apoptosis induced by either TPA or diacylglycerol-lactone (DAG-lactone), both inducing PKCalpha activation,(2) are abrogated in LNCaP cells following transfection of a kinase-dead PKCalpha mutant (KD-PKCalpha). Similarly, KD-PKCalpha blocks the apoptotic response elicited by combination of TPA and radiation, whereas expression of constitutively active PKCalpha is sufficient to sensitize cells to radiation alone, without a need to pre-treat the cells with TPA. These findings identify CS activation as a downstream event of PKCalpha activity in LNCaP cells. Similar results were obtained in CWR22-Rv1 cells with DAG-lactone treatment. Using the LNCaP orthotopic prostate model it is shown that treatment with TPA or DAG-lactone induces significant reduction in tumor ATM levels coupled with tumor growth delay. Furthermore, while fractionated radiation alone produces significant tumor growth delay, pretreatment with TPA or DAG-lactone significantly potentiates tumor cure. These findings support a model in which activation of PKCalpha downregulates ATM, thus relieving CS repression by ATM and enhancing apoptosis via ceramide generation. This model may provide a basis for the design of new therapies in prostate cancer.


Assuntos
Androgênios/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Neoplasias da Próstata/patologia , Proteína Quinase C-alfa/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/efeitos dos fármacos , Divisão Celular/efeitos da radiação , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Humanos , Cinética , Masculino , Neoplasias da Próstata/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Proteínas Supressoras de Tumor/metabolismo , Valeratos/farmacologia
15.
Autophagy ; 5(2): 184-93, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19098447

RESUMO

Safingol, the synthetic L-threo-stereoisomer of endogenous (D-erythro-) sphinganine, is an inhibitor of protein kinase C and sphingosine kinase in vitro, and in some cell types has been implicated in ceramide generation and induction of apoptosis. Utilizing electron microscopy, acridine orange staining, and immunoblot and fluorescent localization studies of the myosin light chain-associated protein (LC3), we determined that safingol induces cell death of an exclusively autophagic character and lacking any of the hallmarks of apoptosis. Safingol inhibited PKCbeta-I, PKC delta and PKC epsilon, and inhibited phosphorylation of critical components of the PI3k/Akt/mTOR pathway (Akt, p70S6k and rS6) and the MAPk pathway (ERK). Inhibition of PI3k with LY294002 or suppression of PKC delta and PKC epsilon with siRNA in HCT-116 cells induced autophagy, though not to the extent caused by safingol. Conversely, activation of PKCs with phorbol 12,13-dibutyrate (PDBu) or transient transfection of a constitutively active form of Akt each reduced safingol's autophagic induction, but not completely, indicating that Akt- and PKC-dependent pathways both contribute partially and independently to safingol-induced autophagy. Accordingly, combining siRNA depletion of PKC epsilon with LY294002 inhibition of PI3k induced autophagy to a degree comparable to safingol. Liquid chromatography, electrospray tandem mass spectrometry analysis indicated that safingol did not elevate levels of any endogenous sphingolipids previously shown to induce autophagy (ceramide, sphingosine-1-phosphate and dihydroceramide); therefore, these effects may be due to safingol per se or another metabolite. Thus, our studies establish that safingol induces autophagy through inhibition of PKCs and PI3k by safingol directly rather than via changes in endogenous sphingolipids.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias/enzimologia , Neoplasias/patologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteína Quinase C/antagonistas & inibidores , Esfingosina/análogos & derivados , Laranja de Acridina , Contagem de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Imunofluorescência , Humanos , Neoplasias/ultraestrutura , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Esfingolipídeos/metabolismo , Esfingosina/farmacologia , Serina-Treonina Quinases TOR , Espectrometria de Massas em Tandem
16.
Nat Med ; 11(5): 484-90, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15864314

RESUMO

Although stem cells succumbing to reproductive death are assumed to be the single relevant targets in radiation tissue damage, recent studies showed intestinal stem cell damage is conditionally linked to crypt endothelial apoptosis, defining a two-target model. Here we report that when mouse intestines were protected against microvascular apoptosis, radiation switched as the dose escalated to a previously unrecognized crypt stem cell target, activating ceramide synthase-mediated apoptosis to initiate intestinal damage. Whereas ataxia telangiectasia-mutated (ATM) kinase normally represses ceramide synthase, its derepression in Atm(-/-) mice increased crypt stem cell radiosensitivity 3.7-fold without sensitizing the microvascular response. Discovery of this intestinal radiosensitivity mechanism allowed design of an antisense Atm oligonucleotide treatment which phenocopied the Atm(-/-) mouse, reordering ceramide synthase-mediated stem cell death to become the first-line gastrointestinal response of wild-type littermates. These experiments indicate that tissues operate multiple potential targets activated consecutively according to their inherent radiosensitivities that may be reordered therapeutically to control radiation tissue responses.


Assuntos
Apoptose/efeitos da radiação , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias/radioterapia , Oxirredutases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/efeitos da radiação , Ensaio Tumoral de Célula-Tronco , Proteínas Supressoras de Tumor/metabolismo , Irradiação Corporal Total , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Ceramidas/metabolismo , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta à Radiação , Células Endoteliais/metabolismo , Ativação Enzimática/efeitos da radiação , Técnicas Histológicas , Jejuno/citologia , Jejuno/metabolismo , Jejuno/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligonucleotídeos , Proteínas Serina-Treonina Quinases/genética , Tolerância a Radiação/genética , Proteínas Supressoras de Tumor/genética
17.
J Biol Chem ; 280(24): 23262-72, 2005 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-15837784

RESUMO

Treatment with the protein kinase C activator 12-O-tetradecanoylphorbol 12-acetate (TPA) enables radiation-resistant LNCaP human prostate cancer cells to undergo radiation-induced apoptosis, mediated via activation of the enzyme ceramide synthase (CS) and de novo synthesis of the sphingolipid ceramide (Garzotto, M., Haimovitz-Friedman, A., Liao, W. C., White-Jones, M., Huryk, R., Heston, D. W. W., Cardon-Cardo, C., Kolesnick, R., and Fuks, Z. (1999) Cancer Res. 59, 5194-5201). Here, we show that TPA functions to decrease the cellular level of the ATM (ataxia telangiectasia mutated) protein, known to repress CS activation (Liao, W.-C., Haimovitz-Friedman, A., Persaud, R., McLoughlin, M., Ehleiter, D., Zhang, N., Gatei, M., Lavin, M., Kolesnick, R., and Fuks, Z. (1999) J. Biol. Chem. 274, 17908-17917). Gel shift analysis in LNCaP and CWR22-Rv1 cells demonstrated a significant reduction in DNA binding of the Sp1 transcription factor to the ATM promoter, and quantitative reverse transcription-PCR showed a 50% reduction of ATM mRNA between 8 and 16 h of TPA treatment, indicating that TPA inhibits ATM transcription. Furthermore, treatment of LNCaP, CWR22-Rv1, PC-3, and DU-145 human prostate cells with antisense-ATM oligonucleotides, which markedly reduced cellular ATM levels, significantly enhanced radiation-induced CS activation and apoptosis, leading to apoptosis at doses as a low as 1 gray. These data suggest that the CS pathway initiates a generic mode of radiation-induced apoptosis in human prostate cancer cells, regulated by a suppressive function of ATM, and that ATM might represent a potential target for pharmacologic inactivation with potential clinical applications in human prostate cancer.


Assuntos
Apoptose , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/radioterapia , Proteínas Serina-Treonina Quinases/metabolismo , Radiossensibilizantes/farmacologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Ciclo Celular , Morte Celular , Linhagem Celular Tumoral , Separação Celular , Ceramidas/metabolismo , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Citometria de Fluxo , Humanos , Cinética , Masculino , Oligonucleotídeos Antissenso/farmacologia , Oxirredutases/metabolismo , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição Sp1/metabolismo , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA