RESUMO
Prostate cancer is responsible for hundreds of thousands of annual deaths worldwide. The current gold standard in early detection of prostate cancer, the prostate specific antigen test, boasts a high sensitivity but low specificity, resulting in many unnecessary prostate biopsies. Thus, emphasis has been placed on identifying new biomarkers to improve prostate cancer detection. Glypican-1 has recently been proposed as one such biomarker, however further exploration into its predictive power has been hindered by a lack of available, dependable glypican-1 immunoassays. Previously, we identified human glypican-1 as the antigenic target of the MIL-38 monoclonal antibody. Additionally, we have now generated another monoclonal antibody, 3G5, that also recognizes human glypican-1. Here we report the development of a reliable, custom Luminex® assay that enables precise quantitation of circulating human glypican-1 in plasma and serum. Using this assay, we show for the first time that circulating glypican-1 levels can differentiate non-cancer (normal and benign prostatic hyperplasia) patients from prostate cancer patients, as well as benign prostatic hyperplasia patients alone from prostate cancer patients. Our findings strongly promote future investigation into the use of glypican-1 for early detection of prostate cancer.
RESUMO
Prostate cancer is the most frequently diagnosed male visceral cancer and the second leading cause of cancer death in the United States. Standard tests such as prostate-specific antigen (PSA) measurement have poor specificity (33%) resulting in a high number of false positive reports. Consequently there is a need for new biomarkers to address this problem. The MIL-38 antibody was first described nearly thirty years ago, however, until now, the identification of the target antigen remained elusive. By a series of molecular techniques and mass spectrometry, the MIL-38 antigen was identified to be the highly glycosylated proteoglycan Glypican-1 (GPC-1). This protein is present in two forms; a membrane bound core protein of 55-60 kDa and secreted soluble forms of 40 kDa and 52 kDa. GPC-1 identification was confirmed by immuno-precipitation, western blots and ELISA. An ELISA platform is currently being developed to assess the levels of GPC-1 in normal, benign prostatic hyperplasia (BPH) and prostate cancer patients to determine whether secreted GPC-1 may represent a clinically relevant biomarker for prostate cancer diagnosis.