Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(2): e0100123, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38231535

RESUMO

Endogenous transporters protect Staphylococcus aureus against antibiotics and also contribute to bacterial defense from environmental toxins. We evaluated the effect of overexpression of four efflux pumps, NorA, NorB, NorC, and Tet38, on S. aureus survival following exposure to pyocyanin (PYO) of Pseudomonas aeruginosa, using a well diffusion assay. We measured the PYO-created inhibition zone and found that only an overexpression of NorA reduced S. aureus susceptibility to pyocyanin killing. The MICPYO of the NorA overexpressor increased threefold compared to that of wild-type RN6390 and was reduced 2.5-fold with reserpine, suggesting that increased NorA efflux caused PYO resistance. The PYO-created inhibition zone of a ΔnorA mutant was consistently larger than that of a plasmid-borne NorA overexpressor. PYO also produced a modest increase in norA expression (1.8-fold at 0.25 µg/mL PYO) that gradually decreased with increasing PYO concentrations. Well diffusion assays carried out using P. aeruginosa showed that ΔnorA mutant was less susceptible to killing by PYO-deficient mutants PA14phzM and PA14phzS than to killing by PA14. NorA overexpression led to reduced killing by all tested P. aeruginosa. We evaluated the NorA-PYO interaction using a collection of 22 clinical isolates from adult and pediatric cystic fibrosis (CF) patients, which included both S. aureus (CF-SA) and P. aeruginosa (CF-PA). We found that when isolated alone, CF-PA and CF-SA expressed varying levels of PYO and norA transcripts, but all four CF-PA/CF-SA pairs isolated concurrently from CF patients produced a low level of PYO and low norA transcript levels, respectively, suggesting a partial adaptation of the two bacteria in circumstances of persistent co-colonization.


Assuntos
Infecções por Pseudomonas , Infecções Estafilocócicas , Humanos , Criança , Staphylococcus aureus , Pseudomonas aeruginosa/metabolismo , Piocianina/farmacologia , Proteínas de Bactérias/metabolismo , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Testes de Sensibilidade Microbiana
2.
Infect Immun ; 89(5)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33619028

RESUMO

The Staphylococcus aureus Tet38 membrane protein has distinct functions, including drug efflux and host cell attachment and internalization mediated by interaction with host cell CD36. Using structural modeling and site-directed mutagenesis, we identified key amino acids involved in different functions. Tet38, a member of the major facilitator superfamily, is predicted to have 14 transmembrane segments (TMS), 6 cytoplasmic loops, and 7 external loops. Cysteine substitutions of arginine 106 situated at the junction of TMS 4 and external loop L2, and glycine 151 of motif C on TMS 5, resulted in complete or near-complete (8- to 16-fold) reductions in Tet38-mediated resistance to tetracycline, with minimal to no effect on A549 host cell internalization. In contrast, a three-amino-acid deletion, F411P412G413, in external loop L7 situated between TMS 13 and 14 led to a decrease of 4-fold in S. aureus internalization by A549 cells and a partial effect on tetracycline resistance (4-fold reduction). A three-amino-acid deletion, D38D39L40, in external loop L1 situated between TMS-1 and TMS-2, had a similar partial effect on tetracycline resistance but did not affect cell internalization. Using an Ni column retention assay, we showed further that the L7, but not the L1, deletion impaired binding to CD36. Thus, the L7 domain of Tet38 is key for interaction with CD36 and host cell internalization, and amino acids R106 and G151 (TMSs 4 and 5) are particularly important for tetracycline resistance without affecting internalization.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Resistencia a Medicamentos Antineoplásicos , Interações Hospedeiro-Patógeno , Humanos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Relação Estrutura-Atividade , Tetraciclina/farmacologia
3.
Infect Immun ; 85(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27956597

RESUMO

We previously reported that the Tet38 efflux pump is involved in internalization of Staphylococcus aureus by A549 lung epithelial cells. A lack of tet38 reduced bacterial uptake by A549 cells to 36% of that of the parental strain RN6390. Using invasion assays coupled with confocal microscopy imaging, we studied the host cell receptor(s) responsible for bacterial uptake via interaction with Tet38. We also assessed the ability of S. aureus to survive following alkalinization of the phagolysosomes by chloroquine. Antibody to the scavenger receptor CD36 reduced the internalization of S. aureus RN6390 by A549 cells, but the dependence on CD36 was reduced in QT7 tet38, suggesting that an interaction between Tet38 and CD36 contributed to S. aureus internalization. Following fusion of the S. aureus-associated endosomes with lysosomes, alkalinization of the acidic environment with chloroquine led to a rapid increase in the number of S. aureus RN6390 bacteria in the cytosol, followed by a decrease shortly thereafter. This effect of chloroquine was not seen in the absence of intact Tet38 in mutant QT7. These data taken together suggest that Tet38 plays a role both in bacterial internalization via interaction with CD36 and in bacterial escape from the phagolysosomes.


Assuntos
Proteínas de Bactérias/metabolismo , Antígenos CD36/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Fagossomos/microbiologia , Staphylococcus aureus/fisiologia , Anticorpos Monoclonais/farmacologia , Antígenos CD36/antagonistas & inibidores , Linhagem Celular , Cloroquina/farmacologia , Células Epiteliais/imunologia , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Ligação Proteica , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Receptor 2 Toll-Like/antagonistas & inibidores
4.
Infect Immun ; 83(11): 4362-72, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26324534

RESUMO

We previously identified the protein Tet38 as a chromosomally encoded efflux pump of Staphylococcus aureus that confers resistance to tetracycline and certain unsaturated fatty acids. Tet38 also contributes to mouse skin colonization. In this study, we discovered a novel regulator of tet38, named tetracycline regulator 21 (TetR21), that bound specifically to the tet38 promoter and repressed pump expression. A ΔtetR21 mutant showed a 5-fold increase in tet38 transcripts and an 8-fold increase in resistance to tetracycline and fatty acids. The global regulator MgrA bound to the tetR21 promoter and indirectly repressed the expression of tet38. To further assess the full role of Tet38 in S. aureus adaptability, we tested its effect on host cell invasion using A549 (lung) and HMEC-1 (heart) cell lines. We used S. aureus RN6390, its Δtet38, ΔtetR21, and ΔmgrA mutants, and a Δtet38 ΔtetR21 double mutant. After 2 h of contact, the Δtet38 mutant was internalized in 6-fold-lower numbers than RN6390 in A549 and HMEC-1 cells, and the ΔtetR21 mutant was internalized in 2-fold-higher numbers than RN6390. A slight increase of 1.5-fold in internalization was found for the ΔmgrA mutant. The growth patterns of RN6390 and the ΔmgrA and ΔtetR21 mutants within A549 cells were similar, while no growth was observed for the Δtet38 mutant. These data indicate that the Tet38 efflux pump is regulated by TetR21 and contributes to the ability of S. aureus to internalize and replicate within epithelial cells.


Assuntos
Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Regulação Bacteriana da Expressão Gênica , Humanos , Proteínas de Membrana Transportadoras/genética , Camundongos , Viabilidade Microbiana , Regiões Promotoras Genéticas , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Tetraciclina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA