Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Digit Med ; 7(1): 304, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39468290

RESUMO

We developed and evaluated the Digital Platform for Exercise (DPEx): a decentralized, patient-centric approach designed to enhance all aspects of clinical investigation of exercise therapy. DPEx integrated provision of a treadmill with telemedicine and remote biospecimen collection permitting all study procedures to be conducted in patient's homes. Linked health biodevices enabled high-resolution monitoring of lifestyle and physiological response. Here we describe the rationale and development of DPEx as well as feasibility evaluation in three different cohorts of patients with cancer: a phase 0a development study among three women with post-treatment primary breast cancer; a phase 0b proof-of-concept trial of neoadjuvant exercise therapy in 13 patients with untreated solid tumors; and a phase 1a level-finding trial of neoadjuvant exercise therapy in 53 men with localized prostate cancer. Collectively, our study demonstrates the utility of a fully digital, decentralized approach to conduct clinical trials of exercise therapy in a clinical population.

2.
iScience ; 26(12): 108480, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38089570

RESUMO

Mutated Ras and Raf kinases are well-known to promote cancer metastasis via flux through the Ras/Raf/MEK/ERK (mitogen-activated protein kinase [MAPK]) pathway. A role for non-mutated Raf in metastasis is also emerging, but the key mechanisms remain unclear. Elevated expression of any of the three wild-type Raf family members (C, A, or B) can drive metastasis. We utilized an in vivo model to show that wild-type C-Raf overexpression can promote metastasis of immortalized prostate cells in a gene dosage-dependent manner. Analysis of the transcriptomic and phosphoproteomic landscape indicated that C-Raf-driven metastasis is accompanied by upregulated MAPK signaling. Use of C-Raf mutants demonstrated that the dimerization domain, but not its kinase activity, is essential for metastasis. Endogenous Raf monomer knockouts revealed that C-Raf's ability to form dimers with endogenous Raf molecules is important for promoting metastasis. These data identify wild-type C-Raf heterodimer signaling as a potential target for treating metastatic disease.

3.
Nat Commun ; 14(1): 3168, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280220

RESUMO

High throughput drug screening is an established approach to investigate tumor biology and identify therapeutic leads. Traditional platforms use two-dimensional cultures which do not accurately reflect the biology of human tumors. More clinically relevant model systems such as three-dimensional tumor organoids can be difficult to scale and screen. Manually seeded organoids coupled to destructive endpoint assays allow for the characterization of treatment response, but do not capture transitory changes and intra-sample heterogeneity underlying clinically observed resistance to therapy. We present a pipeline to generate bioprinted tumor organoids linked to label-free, time-resolved imaging via high-speed live cell interferometry (HSLCI) and machine learning-based quantitation of individual organoids. Bioprinting cells gives rise to 3D structures with unaltered tumor histology and gene expression profiles. HSLCI imaging in tandem with machine learning-based segmentation and classification tools enables accurate, label-free parallel mass measurements for thousands of organoids. We demonstrate that this strategy identifies organoids transiently or persistently sensitive or resistant to specific therapies, information that could be used to guide rapid therapy selection.


Assuntos
Bioimpressão , Neoplasias , Humanos , Avaliação Pré-Clínica de Medicamentos/métodos , Organoides/metabolismo , Neoplasias/patologia , Interferometria
4.
Proc Natl Acad Sci U S A ; 117(10): 5269-5279, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32086391

RESUMO

We sought to define the landscape of alternative pre-mRNA splicing in prostate cancers and the relationship of exon choice to known cancer driver alterations. To do so, we compiled a metadataset composed of 876 RNA-sequencing (RNA-Seq) samples from five publicly available sources representing a range of prostate phenotypes from normal tissue to drug-resistant metastases. We subjected these samples to exon-level analysis with rMATS-turbo, purpose-built software designed for large-scale analyses of splicing, and identified 13,149 high-confidence cassette exon events with variable incorporation across samples. We then developed a computational framework, pathway enrichment-guided activity study of alternative splicing (PEGASAS), to correlate transcriptional signatures of 50 different cancer driver pathways with these alternative splicing events. We discovered that Myc signaling was correlated with incorporation of a set of 1,039 cassette exons enriched in genes encoding RNA binding proteins. Using a human prostate epithelial transformation assay, we confirmed the Myc regulation of 147 of these exons, many of which introduced frameshifts or encoded premature stop codons. Our results connect changes in alternative pre-mRNA splicing to oncogenic alterations common in prostate and many other cancers. We also establish a role for Myc in regulating RNA splicing by controlling the incorporation of nonsense-mediated decay-determinant exons in genes encoding RNA binding proteins.


Assuntos
Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Códon de Terminação/genética , Simulação por Computador , Conjuntos de Dados como Assunto , Resistencia a Medicamentos Antineoplásicos/genética , Éxons , Feminino , Mutação da Fase de Leitura , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA-Seq , Transdução de Sinais , Software
5.
Proc Natl Acad Sci U S A ; 117(1): 563-572, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871155

RESUMO

Small cell carcinoma of the bladder (SCCB) is a rare and lethal phenotype of bladder cancer. The pathogenesis and molecular features are unknown. Here, we established a genetically engineered SCCB model and a cohort of patient SCCB and urothelial carcinoma samples to characterize molecular similarities and differences between bladder cancer phenotypes. We demonstrate that SCCB shares a urothelial origin with other bladder cancer phenotypes by showing that urothelial cells driven by a set of defined oncogenic factors give rise to a mixture of tumor phenotypes, including small cell carcinoma, urothelial carcinoma, and squamous cell carcinoma. Tumor-derived single-cell clones also give rise to both SCCB and urothelial carcinoma in xenografts. Despite this shared urothelial origin, clinical SCCB samples have a distinct transcriptional profile and a unique transcriptional regulatory network. Using the transcriptional profile from our cohort, we identified cell surface proteins (CSPs) associated with the SCCB phenotype. We found that the majority of SCCB samples have PD-L1 expression in both tumor cells and tumor-infiltrating lymphocytes, suggesting that immune checkpoint inhibitors could be a treatment option for SCCB. We further demonstrate that our genetically engineered tumor model is a representative tool for investigating CSPs in SCCB by showing that it shares a similar a CSP profile with clinical samples and expresses SCCB-up-regulated CSPs at both the mRNA and protein levels. Our findings reveal distinct molecular features of SCCB and provide a transcriptional dataset and a preclinical model for further investigating SCCB biology.


Assuntos
Carcinoma de Células Pequenas/patologia , Carcinoma de Células de Transição/patologia , Transformação Celular Neoplásica/genética , Neoplasias da Bexiga Urinária/patologia , Bexiga Urinária/patologia , Urotélio/patologia , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Carcinoma de Células Pequenas/genética , Carcinoma de Células Pequenas/terapia , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/terapia , Transformação Celular Neoplásica/efeitos dos fármacos , Células Cultivadas , Cistectomia , Conjuntos de Dados como Assunto , Células Epiteliais , Regulação Neoplásica da Expressão Gênica , Engenharia Genética , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Cultura Primária de Células , RNA-Seq , Bexiga Urinária/citologia , Bexiga Urinária/cirurgia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Urotélio/citologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Science ; 362(6410): 91-95, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30287662

RESUMO

The use of potent therapies inhibiting critical oncogenic pathways active in epithelial cancers has led to multiple resistance mechanisms, including the development of highly aggressive, small cell neuroendocrine carcinoma (SCNC). SCNC patients have a dismal prognosis due in part to a limited understanding of the molecular mechanisms driving this malignancy and the lack of effective treatments. Here, we demonstrate that a common set of defined oncogenic drivers reproducibly reprograms normal human prostate and lung epithelial cells to small cell prostate cancer (SCPC) and small cell lung cancer (SCLC), respectively. We identify shared active transcription factor binding regions in the reprogrammed prostate and lung SCNCs by integrative analyses of epigenetic and transcriptional landscapes. These results suggest that neuroendocrine cancers arising from distinct epithelial tissues may share common vulnerabilities that could be exploited for the development of drugs targeting SCNCs.


Assuntos
Carcinogênese/genética , Carcinoma Neuroendócrino/patologia , Reprogramação Celular/genética , Neoplasias Pulmonares/patologia , Pulmão/patologia , Próstata/patologia , Neoplasias da Próstata/patologia , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma Neuroendócrino/genética , Linhagem Celular Tumoral , Linhagem da Célula , Técnicas de Reprogramação Celular , Sistemas de Liberação de Medicamentos , Células Epiteliais/patologia , Epitélio/patologia , Humanos , Masculino , Neoplasias da Próstata/genética , Proteína do Retinoblastoma/genética , Carcinoma de Pequenas Células do Pulmão/genética , Proteína Supressora de Tumor p53/genética
7.
Cell Rep ; 24(12): 3353-3366.e5, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30232014

RESUMO

Cancer progression to an aggressive phenotype often co-opts aspects of stem cell biology. Here, we developed gene signatures for normal human stem cell populations to understand the relationship between epithelial cancers and stem cell transcriptional programs. Using a pan-cancer approach, we reveal that aggressive epithelial cancers are enriched for a transcriptional signature shared by epithelial adult stem cells. The adult stem cell signature selected for epithelial cancers with worse overall survival and alterations of oncogenic drivers. Lethal small cell neuroendocrine lung, prostate, and bladder cancers transcriptionally converged onto the adult stem cell signature and not other stem cell signatures tested. We found that DNA methyltransferase expression correlated with adult stem cell signature status and was enriched in small cell neuroendocrine cancers. DNA methylation analysis uncovered a shared epigenomic profile between small cell neuroendocrine cancers. These pan-cancer findings establish a molecular link between human adult stem cells and aggressive epithelial cancers.


Assuntos
Células-Tronco Adultas/metabolismo , Células Epiteliais/metabolismo , Neoplasias Pulmonares/genética , Neoplasias da Próstata/genética , Transcriptoma , Neoplasias da Bexiga Urinária/genética , Animais , Linhagem Celular , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Neoplasias da Próstata/metabolismo , Neoplasias da Bexiga Urinária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA