Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(20): e2307837, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488694

RESUMO

Endo-microscopy is crucial for real-time 3D visualization of internal tissues and subcellular structures. Conventional methods rely on axial movement of optical components for precise focus adjustment, limiting miniaturization and complicating procedures. Meta-device, composed of artificial nanostructures, is an emerging optical flat device that can freely manipulate the phase and amplitude of light. Here, an intelligent fluorescence endo-microscope is developed based on varifocal meta-lens and deep learning (DL). The breakthrough enables in vivo 3D imaging of mouse brains, where varifocal meta-lens focal length adjusts through relative rotation angle. The system offers key advantages such as invariant magnification, a large field-of-view, and optical sectioning at a maximum focal length tuning range of ≈2 mm with 3 µm lateral resolution. Using a DL network, image acquisition time and system complexity are significantly reduced, and in vivo high-resolution brain images of detailed vessels and surrounding perivascular space are clearly observed within 0.1 s (≈50 times faster). The approach will benefit various surgical procedures, such as gastrointestinal biopsies, neural imaging, brain surgery, etc.


Assuntos
Encéfalo , Aprendizado Profundo , Imageamento Tridimensional , Microscopia de Fluorescência , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência/instrumentação , Desenho de Equipamento/métodos
2.
Small Methods ; 6(4): e2101228, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35212186

RESUMO

Manipulation and precise delivery of optical energies in the regions of interest within specimens require different strategies. Hence, proper control of input beam parameters is a prerequisite. One of the prominent methods is metasurface optics, capable of crafting properties of light at nanoscales. Here, the generation of an abrupt autofocusing (AAF) beam by a nanophotonic metasurface for biomedical applications is demonstrated. Fluorescence guided laser microprofiling of mouse cardiac samples is experimentally investigated, using the AAF beam to deliver optical energy selectively to specific locations. In addition, photocoagulation of ex vivo swine skin tissue is performed and observed through optical coherence tomography. The results show great potentials for integrating metasurface optics to realize miniature laser surgery instruments for wide applications in biomedicine.


Assuntos
Lasers , Óptica e Fotônica , Animais , Camundongos , Suínos
3.
ACS Sens ; 4(11): 2900-2907, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31602973

RESUMO

We present experimental and theoretical studies of a metamaterial-based plasmonic structure to build a plasmonic-molecular coupling detection system. High molecular sensitivity is realized only when molecules are located in the vicinity of the enhanced field (hot spot region); thus, introducing target molecules in the hot spot region to maximize plasmonic-molecular coupling is crucial to developing the sensing technology. We design a metamaterial consisting of a vertically oriented metal insulator metal (MIM) structure with a 25 nm channel sandwiched between two metal films, which enables the delivery of molecules into the large ravinelike hot spot region, offering an ultrasensitive platform for molecular sensing. This metamaterial is applied to carbon dioxide and butane detection. We design the structure to exhibit resonances at 4033 and 2945 cm-1, which overlap with the C═O and -CH2 vibration modes, respectively. The mutual coupling of these two resonance modes creates a Fano resonance, and their distinct peaks are clearly observed in the corresponding transmission dips. In addition, owing to its small footprint, such a vertical-oriented MIM structure enables us to increase the integration density and allows the detection of a 20 ppm concentration with negligible background noise and high selectivity in the mid-infrared region.


Assuntos
Butanos/análise , Dióxido de Carbono/análise , Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia , Dióxido de Silício/química , Ressonância de Plasmônio de Superfície , Estrutura Molecular
4.
ACS Omega ; 3(2): 1627-1634, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30023811

RESUMO

The matrix metalloproteinases (MMPs) are well-known mediators that are activated in tumor progression. MMP2 is a kind of gelatinase in extracellular matrix remodeling and cancer metastasis processes. MMP2 secretion increased in many types of cancer diseases, and its abnormal expression is associated with a poor prognosis. We fabricated a nanocomposite that sensed MMP2 expression by a red and blue light change. This nanocomposite consisted of an upconversion nanoparticle (UCNP), MMP2-sensitive peptide, and CuInS2/ZnS quantum dot (CIS/ZnS QD). An UCNP is composed of NaYF4:Tm/Yb@NaYF4:Nd/Yb, which has multiple emissions at UV/blue-visible wavelengths under 808 nm laser excitation. The conjugated CIS/ZnS QD showed the red-visible fluorescence though the FRET process. The two fluorophores were connected by a MMP2-sensitive peptide to form a novel MMP2 biosensor, named UCNP@p-QD. UCNP@p-QD was highly biocompatible according to cell viability assay. The FRET-based biosensor was employed in the MMP2 determination in vitro and in vivo. Furthermore, it was administrated into the tumor-bearing mouse to check MMP2 expression. UCNP@p-QD could be a promising tool for biological study and biomedical application. In this study, we demonstrated that the CIS/ZnS QD improved the upconversion intensity through a near-infrared-induced FRET process. This nanocomposite has the advantage of light penetration, excellent biocompatibility, and high sensitivity to sense MMP2. The near-infrared-induced composites are a potential inspiration for use in biomedical applications.

5.
Sci Adv ; 4(1): eaao0773, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29326979

RESUMO

The past two decades have witnessed the revolutionary development of optical trapping of nanoparticles, most of which deal with trapping stiffness larger than 10-8 N/m. In this conventional regime, however, it remains a formidable challenge to sort out sub-50-nm nanoparticles with single-nanometer precision, isolating us from a rich flatland with advanced applications of micromanipulation. With an insightfully established roadmap of damping, the synchronization between optical force and flow drag force can be coordinated to attempt the loosely overdamped realm (stiffness, 10-10 to 10-8 N/m), which has been challenging. This paper intuitively demonstrates the remarkable functionality to sort out single gold nanoparticles with radii ranging from 30 to 50 nm, as well as 100- and 150-nm polystyrene nanoparticles, with single nanometer precision. The quasi-Bessel optical profile and the loosely overdamped potential wells in the microchannel enable those aforementioned nanoparticles to be separated, positioned, and microscopically oscillated. This work reveals an unprecedentedly meaningful damping scenario that enriches our fundamental understanding of particle kinetics in intriguing optical systems, and offers new opportunities for tumor targeting, intracellular imaging, and sorting small particles such as viruses and DNA.

7.
Sci Rep ; 7(1): 17130, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203927

RESUMO

A correction to this article has been published and is linked from the HTML version of this paper. The error has not been fixed in the paper.

8.
Sci Rep ; 7(1): 11096, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894227

RESUMO

An electron bunch passing through a periodic metal grating can emit Smith-Purcell radiation (SPR). Recently, it has been found that SPR can be locked and enhanced at some emission wavelength and angle by excitation of surface plasmon (SP) on the metal substrate. In this work, the generation of a convergent light beam via using the SP-locked SPR is proposed and investigated by computer simulations. The proposed structure is composed of an insulator-metal-insulator (IMI) substrate with chirped gratings on the substrate. The chirped gratings are designed such that a convergent beam containing a single wavelength is formed directly above the gratings when an electron bunch passes beneath the substrate. The wavelength of the convergent beam changes with the refractive index of dielectric layer of the IMI structure, which is determined by the frequency of SP on the IMI substrate excited by the electron bunch. Moreover, reversing the direction of electron bunch will make the emitted light from the proposed structure to switch from a convergent beam to a divergent beam. Finally, the formation of a convergent beam containing red, green and blue lights just above the chirped gratings is also demonstrated. This work offers potential applications in the fields of optical imaging, optical beam steering, holography, microdisplay, cryptography and light source.

9.
Sci Rep ; 7(1): 6443, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743944

RESUMO

In this work, the terahertz (THz) Smith-Purcell radiations (SPRs) for the relativistic electron bunch passing over an indium antimonide (InSb)-based substrate with a subwavelength grating under various temperatures of substrate are investigated by FDTD simulations and theoretical analyses. The explored SPR is locked and enhanced at a certain emission wavelength with the emission angle still following the wavelength-angle relation of the traditional SPR. This wavelength agrees with the (vacuum) wavelength of surface plasmons (SPs) at the air-InSb interface excited by the electron bunch. The enhancement of SPR at this wavelength is attributed to the energy from electron concentrated in the excited SPs and then transformed into radiation via the SPR mechanism. When the temperature of InSb increases, the emission wavelength of the enhanced SPR decreases along with the emission angles increasing gradually. This work demonstrates that the emission wavelength and angle of the enhanced SPR from the InSb grating can be manipulated by the temperature of InSb. The temperature tunability of SP-enhanced SPR has potential applications in the fields of optical beam steering and metamaterial light source.

10.
Nano Lett ; 17(1): 445-452, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27935318

RESUMO

All forms of light manipulation rely on light-matter interaction, the primary mechanism of which is the modulation of its electromagnetic fields by the localized electromagnetic fields of atoms. One of the important factors that influence the strength of interaction is the polarization of the electromagnetic field. The generation and manipulation of light polarization have been traditionally accomplished with bulky optical components such as waveplates, polarizers, and polarization beam splitters that are optically thick. The miniaturization of these devices is highly desirable for the development of a new class of compact, flat, and broadband optical components that can be integrated together on a single photonics chip. Here we demonstrate, for the first time, a reflective metasurface polarization generator (MPG) capable of producing light beams of any polarizations all from a linearly polarized light source with a single optically thin chip. Six polarization light beams are achieved simultaneously including four linear polarizations along different directions and two circular polarizations, all conveniently separated into different reflection angles. With the Pancharatnam-Berry phase-modulation method, the MPG sample was fabricated with aluminum as the plasmonic metal instead of the conventional gold or silver, which allowed for its broadband operation covering the entire visible spectrum. The versatility and compactness of the MPG capable of transforming any incident wave into light beams of arbitrary polarizations over a broad spectral range are an important step forward in achieving a complete set of flat optics for integrated photonics with far-reaching applications.

11.
Biosens Bioelectron ; 80: 131-139, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26820361

RESUMO

Upconversion nanoparticles (UCNPs) have extensive biological-applications because of their bio-compatibility, tunable optical properties and their ability to be excited by infrared radiation. Matrix metalloproteinases (MMPs) play important roles in extracellular matrix remodelling; they are usually found to significantly increase during cancer progression, and these increases may lead to poor patient survival. In this study, we produced a biosensor that can be recognized by MMP2 and then be unravelled by the attached quencher to emit visible light. We used 3.5-nm gold nanoparticles as a quencher that absorbed emission from UCNPs at a wavelength of 540 nm. The biosensor consists of an upconversion nanoparticle, MMP2-recognized polypeptides and quenchers. Here, UCNPs consisting of NaYF4:Yb(3+)/Er(3+) were prepared via a high temperature co-precipitation method while protecting the oleic acid ligand. To improve the biocompatibility and modify the UCNPs with a polypeptide, they were coated with a silica shell and further conjugated with MMP-recognizing polypeptides. The polypeptide has two ends of featuring carboxylic and thiol groups that react with UCNPs and AuNPs, and the resulting nanoparticles were referred to as UCNP@p-Au. According to the in vitro cell viability analysis, UCNP@p-Au exhibited little toxicity and biocompatibility in head and neck cancer cells. Cellular uptake studies showed that the MMP-based biosensor was activated by 980-nm irradiation to emit green light. This MMP-based biosensor may serve as sensitive and specific molecular fluorescent probe in biological-applications.


Assuntos
Técnicas Biossensoriais , Neoplasias de Cabeça e Pescoço/diagnóstico , Metaloproteinase 2 da Matriz/isolamento & purificação , Ouro/química , Neoplasias de Cabeça e Pescoço/genética , Humanos , Metaloproteinase 2 da Matriz/química , Nanopartículas Metálicas/química , Dióxido de Silício/química
12.
J Dermatol Sci ; 80(2): 124-32, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26360010

RESUMO

BACKGROUND: Strategies combining anti-vascular therapy and vascular imaging may facilitate the prediction of early response and outcome in cancer treatment. OBJECTIVE: The aim of this study was to investigate the relationship between the tumor-associated vasculature in melanoma and to develop an approach for melanoma treatment by utilizing the free form and micelle form of the photosensitizer (PS) chlorin e6 in photodynamic therapy (PDT). METHODS: Green fluorescence protein (GFP) expressing B16-F10 melanoma cells were implanted into the mouse ear dermis. Ce6 in free form or in micelle form was administered via the tail vein. An OV100 imaging system was used to record the red fluorescence of Ce6 to obtain real-time vascular images in the GFP tumor. RESULTS: Compared to free Ce6, Ce6 linked to the micelle-nanocarrier depicted a much clearer vascular image and had an effective vascular destruction by PDT. Micelle Ce6 was localized in lysosomes and in the endoplasmic reticulum of cultured endothelial cells, implying an active endocytosis of the nano-carrier. CONCLUSION: Micelle Ce6 can serve as a bifunctional PS for vascular imaging and PDT, which facilitates its delivery in the tumor microenvironment.


Assuntos
Melanoma Experimental/tratamento farmacológico , Nanopartículas , Neovascularização Patológica , Imagem Óptica/métodos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Porfirinas/administração & dosagem , Neoplasias Cutâneas/tratamento farmacológico , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Química Farmacêutica , Clorofilídeos , Portadores de Fármacos , Endocitose , Retículo Endoplasmático/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Lisossomos/metabolismo , Masculino , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos Nus , Micelas , Fármacos Fotossensibilizantes/química , Porfirinas/química , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Fatores de Tempo , Distribuição Tecidual , Transfecção
13.
Sci Rep ; 5: 13689, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26328535

RESUMO

The in-situ dissolution-and-reduction CVD synthesized few-layer graphene on ultra-thin nickel catalyst film is demonstrated at temperature as low as 550 °C, which can be employed to form transmission-type or reflection-type saturable absorber (SA) for mode-locking the erbium-doped fiber lasers (EDFLs). With transmission-type graphene SA, the EDFL shortens its pulsewidth from 483 to 441 fs and broadens its spectral linewidth from 4.2 to 6.1 nm with enlarging the pumping current from 200 to 900 mA. In contrast, the reflection-type SA only compresses the pulsewidth from 875 to 796 fs with corresponding spectral linewidth broadened from 2.2 to 3.3 nm. The reflection-type graphene mode-locker increases twice of its equivalent layer number to cause more insertion loss than the transmission-type one. Nevertheless, the reflection-type based saturable absorber system can generate stabilized soliton-like pulse easier than that of transmission-type system, because the nonlinearity induced self-amplitude modulation depth is simultaneously enlarged when passing through the graphene twice under the retro-reflector design.

14.
Nano Lett ; 15(5): 3122-7, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25844757

RESUMO

We report a phase-modulated multicolor meta-hologram (MCMH) that is polarization-dependent and capable of producing images in three primary colors. The MCMH structure is made of aluminum nanorods that are arranged in a two-dimensional array of pixels with surface plasmon resonances in red, green, and blue. The aluminum nanorod array is patterned on a 30 nm thick SiO2 spacer layer sputtered on top of a 130 nm thick aluminum mirror. With proper design of the structure, we obtain resonances of narrow bandwidths to allow for implementation of the multicolor scheme. Taking into account of the wavelength dependence of the diffraction angle, we can project images to specific locations with predetermined size and order. With tuning of aluminum nanorod size, we demonstrate that the image color can be continuously varied across the visible spectrum.


Assuntos
Alumínio/química , Holografia/métodos , Nanotecnologia , Nanotubos/química , Cor , Luz , Dióxido de Silício/química , Ressonância de Plasmônio de Superfície
15.
J Mater Chem B ; 3(42): 8293-8302, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-32262884

RESUMO

Nanocomposites consisting of upconversion nanoparticles (UCPs) and plasmonic materials have been widely explored for bio-imaging and cancer photothermal therapy (PTT). However, several challenges, including incomprehensible efficiency of energy transfer processes and optimization of the conditions for plasmon-induced photothermal effects, still exist. In this study, we fabricated NaYF4:Yb3+/Er3+ nanoparticles (NPs) conjugated with gold nanomaterials (Au NMs), such as Au NPs and gold nanorods (Au NRs). NaYF4:Yb3+/Er3+ NPs were used as photoconverters, which could emit green and red light under excitation of a 980 nm laser; Au NPs and Au NRs were also prepared and used as heat producers. The silica shell was further coated around UCPs to improve biocompatibility and as a bridge linking UCPs and the Au NMs. Most importantly, the thickness of the silica shell was tuned precisely to investigate the effective distance of the plasmonic field for heat induction. Energy transfer was confirmed by the declining UCL photoluminescence and emission decay time after connecting to the Au NMs. Moreover, a simulative model was built using the finite element method to assess the differences in heat generation between UCP@SiO2-NPs and UCP@SiO2-NRs. The surfaces of the hybrid nanocomposites were modified with folic acid to improve the specific targeting to cancer cells. The performance of the modified hybrid nanocomposites in PTT for OECM-1 oral cancer cells was evaluated.

16.
Nanoscale ; 5(9): 3931-40, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23536050

RESUMO

This work demonstrates a simple route for synthesizing multi-functional fluorescent nanodiamond-gold/silver nanoparticles. The fluorescent nanodiamond is formed by the surface passivation of poly(ethylene glycol) bis(3-aminopropyl) terminated. Urchin-like gold/silver nanoparticles can be obtained via one-pot synthesis, and combined with each other via further thiolation of nanodiamond. The morphology of the nanodiamond-gold/silver nanoparticles thus formed was identified herein by high-resolution transmission electron microscopy, and clarified using diffraction patterns. Fourier transform infrared spectroscopy clearly revealed the surface functionalization of the nanoparticles. The fluorescence of the materials with high photo stability was examined by high power laser irradiation and long-term storage at room temperature. To develop the bio-recognition of fluorescent nanodiamond-gold/silver nanoparticles, pre-modified transferrin was conjugated with the gold/silver nanoparticles, and the specificity and activity were confirmed in vitro using human hepatoma cell line (J5). The cellular uptake analysis that was conducted using flow cytometry and inductively coupled plasma mass spectrometry exhibited that twice as many transferrin-modified nanoparticles as bare nanoparticles were engulfed, revealing the targeting and ease of internalization of the human hepatoma cell. Additionally, the in situ monitoring of photothermal therapeutic behavior reveals that the nanodiamond-gold/silver nanoparticles conjugated with transferrin was more therapeutic than the bare nanodiamond-gold/silver materials, even when exposed to a less energetic laser source. Ultimately, this multi-functional material has great potential for application in simple synthesis. It is non-cytotoxic, supports long-term tracing and can be used in highly efficient photothermal therapy against cancer cells.


Assuntos
Ouro/química , Luz , Nanopartículas Metálicas/química , Nanodiamantes/química , Prata/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hipertermia Induzida , Nanopartículas Metálicas/toxicidade , Microscopia de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Transferrinas/química
17.
Nanotechnology ; 22(39): 395706, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21896977

RESUMO

The feasibility of using gold nanoparticles (AuNPs) for biomedical applications has led to considerable interest in the development of novel synthetic protocols and surface modification strategies for AuNPs to produce biocompatible molecular probes. This investigation is, to our knowledge, the first to elucidate the synthesis and characterization of sodium hexametaphosphate (HMP)-stabilized gold nanoparticles (Au-HMP) in an aqueous medium. The role of HMP, a food additive, as a polymeric stabilizing and protecting agent for AuNPs is elucidated. The surface modification of Au-HMP nanoparticles was carried out using polyethylene glycol and transferrin to produce molecular probes for possible clinical applications. In vitro cell viability studies performed using as-synthesized Au-HMP nanoparticles and their surface-modified counterparts reveal the biocompatibility of the nanoparticles. The transferrin-conjugated nanoparticles have significantly higher cellular uptake in J5 cells (liver cancer cells) than control cells (oral mucosa fibroblast cells), as determined by inductively coupled plasma mass spectrometry. This study demonstrates the possibility of using an inexpensive and non-toxic food additive, HMP, as a stabilizer in the large-scale generation of biocompatible and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.


Assuntos
Materiais Biocompatíveis/química , Ouro/química , Nanopartículas/química , Fosfatos/química , Transferrina/química , Materiais Biocompatíveis/metabolismo , Linhagem Celular , Permeabilidade da Membrana Celular , Sobrevivência Celular , Ouro/metabolismo , Humanos , Nanopartículas/análise , Nanopartículas/ultraestrutura , Fosfatos/metabolismo , Propriedades de Superfície , Transferrina/metabolismo
18.
Ann N Y Acad Sci ; 1042: 163-7, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15965059

RESUMO

The goal of this study is to examine whether there is a difference in the regulation of Ca2+ between mitochondria near the cell surface and mitochondria in the cytosol. Total internal reflection fluorescence and epifluorescence microscopy were used to monitor changes in the mitochondrial Ca2+ ([Ca2+]mt) between the mitochondria near the plasma membrane and those in the cytosol. The results show that [Ca2+]mt near the plasma membrane increased earlier and decayed slower after high K+ stimulation than average mitochondria in the cytosol. In addition, the changes in [Ca2+]mt in the mitochondria near the cell surface after a second stimulation were larger than those induced by the first stimulation. The results provide direct evidence to support the hypothesis that mitochondria in different subcellular localization show differential responses to the influx of extracellular Ca2+.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Mitocôndrias/metabolismo , Animais , Forma Celular , Microscopia de Fluorescência , Células PC12 , Ratos
19.
Nanomedicine ; 1(4): 286-92, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17292101

RESUMO

Mitochondria are now known to function physiologically not only in the production of ATP as the major cellular energy source, but also in the regulation of intracellular signaling, in, for example, stress-induced apoptosis and buffering of cytosolic calcium. It should be noted, when interpreting mitochondrial studies in situ, that mitochondria within cells show heterogeneity in both function and location. We applied both conventional epifluorescence microscopy (EPIFM) and total-internal-reflection fluorescence microscopy (TIRFM) in this study. Image data taken from TIRFM are excellent and markedly different from those taken from EPIFM. We further investigated the physiological variations of mitochondrial functions using an EPIFM/TIRFM dual-imaging system. This system permits further analysis of functions of mitochondria and other organelles with more precision than is possible using a traditional platform.


Assuntos
Cálcio/metabolismo , Aumento da Imagem/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Microscopia de Vídeo/métodos , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Animais , Células PC12 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA