Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 595(7865): 114-119, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33915568

RESUMO

Respiratory failure is the leading cause of death in patients with severe SARS-CoV-2 infection1,2, but the host response at the lung tissue level is poorly understood. Here we performed single-nucleus RNA sequencing of about 116,000 nuclei from the lungs of nineteen individuals who died of COVID-19 and underwent rapid autopsy and seven control individuals. Integrated analyses identified substantial alterations in cellular composition, transcriptional cell states, and cell-to-cell interactions, thereby providing insight into the biology of lethal COVID-19. The lungs from individuals with COVID-19 were highly inflamed, with dense infiltration of aberrantly activated monocyte-derived macrophages and alveolar macrophages, but had impaired T cell responses. Monocyte/macrophage-derived interleukin-1ß and epithelial cell-derived interleukin-6 were unique features of SARS-CoV-2 infection compared to other viral and bacterial causes of pneumonia. Alveolar type 2 cells adopted an inflammation-associated transient progenitor cell state and failed to undergo full transition into alveolar type 1 cells, resulting in impaired lung regeneration. Furthermore, we identified expansion of recently described CTHRC1+ pathological fibroblasts3 contributing to rapidly ensuing pulmonary fibrosis in COVID-19. Inference of protein activity and ligand-receptor interactions identified putative drug targets to disrupt deleterious circuits. This atlas enables the dissection of lethal COVID-19, may inform our understanding of long-term complications of COVID-19 survivors, and provides an important resource for therapeutic development.


Assuntos
COVID-19/patologia , COVID-19/virologia , Pulmão/patologia , SARS-CoV-2/patogenicidade , Análise de Célula Única , Idoso , Idoso de 80 Anos ou mais , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Atlas como Assunto , Autopsia , COVID-19/imunologia , Estudos de Casos e Controles , Feminino , Fibroblastos/patologia , Fibrose/patologia , Fibrose/virologia , Humanos , Inflamação/patologia , Inflamação/virologia , Macrófagos/patologia , Macrófagos/virologia , Macrófagos Alveolares/patologia , Macrófagos Alveolares/virologia , Masculino , Pessoa de Meia-Idade , Plasmócitos/imunologia , Linfócitos T/imunologia
2.
Clin Transplant ; 34(10): e14028, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32623785

RESUMO

Light-chain (AL) cardiac amyloidosis (CA) has a worse prognosis than transthyretin (ATTR) CA. In this single-center study, we compared post-heart transplant (OHT, orthotopic heart transplantation) survival for AL and ATTR amyloidosis, hypothesizing that these differences would persist post-OHT. Thirty-nine patients with CA (AL, n = 18; ATTR, n = 21) and 1023 non-amyloidosis subjects undergoing OHT were included. Cox proportional hazards modeling was used to evaluate the impact of amyloid subtype and era (early era: from 2001 to 2007; late era: from 2008 to 2018) on survival post-OHT. Survival for non-amyloid patients was greater than ATTR (P = .034) and AL (P < .001) patients in the early era. One, 3-, and 5-year survival rates were higher for ATTR patients than AL patients in the early era (100% vs 75%, 67% vs 50%, and 67% vs 33%, respectively, for ATTR and AL patients). Survival in the non-amyloid cohort was 87% at 1 year, 81% at 3 years, and 76% at 5 years post-OHT. In the late era, AL and ATTR patients had unadjusted 1-year, 3-year, and 5-year survival rates of 100%, which was comparable to non-amyloid patients (90% vs 84% vs 81%). Overall, these findings demonstrate that in the current era, differences in post-OHT survival for AL compared to ATTR are diminishing; OHT outcomes for selected patients with CA do not differ from non-amyloidosis patients.


Assuntos
Neuropatias Amiloides Familiares , Amiloidose , Cardiomiopatias , Transplante de Coração , Neuropatias Amiloides Familiares/cirurgia , Cardiomiopatias/etiologia , Humanos , Pré-Albumina , Prognóstico , Taxa de Sobrevida
6.
Circulation ; 110(25): 3815-21, 2004 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-15583081

RESUMO

BACKGROUND: Assessment of gene expression in peripheral blood may provide a noninvasive screening test for allograft rejection. We hypothesized that changes in peripheral blood expression profiles would correlate with biopsy-proven rejection and would resolve after treatment of rejection episodes. METHODS AND RESULTS: We performed a case-control study nested within a cohort of 189 cardiac transplant patients who had blood samples obtained during endomyocardial biopsy (EMB). Using Affymetrix HU133A microarrays, we analyzed whole-blood expression profiles from 3 groups: (1) control samples with negative EMB (n=7); (2) samples obtained during rejection (at least International Society for Heart and Lung Transplantation grade 3A; n=7); and (3) samples obtained after rejection, after treatment and normalization of the EMB (n=7). We identified 91 transcripts differentially expressed in rejection compared with control (false discovery rate <0.10). In postrejection samples, 98% of transcripts returned toward control levels, displaying an intermediate expression profile for patients with treated rejection (P<0.0001). Cluster analysis of the 40 transcripts with >25% change in expression levels during rejection demonstrated good discrimination between control and rejection samples and verified the intermediate expression profile of postrejection samples. Quantitative real-time polymerase chain reaction confirmed significant differential expression for the predictive markers CFLAR and SOD2 (UniGene ID No. 355724 and No. 384944). CONCLUSIONS: These data demonstrate that peripheral blood expression profiles correlate with biopsy-proven allograft rejection. Intermediate expression profiles of treated rejection suggest persistent immune activation despite normalization of the EMB. If validated in larger studies, expression profiling may prove to be a more sensitive screening test for allograft rejection than EMB.


Assuntos
Perfilação da Expressão Gênica , Rejeição de Enxerto/sangue , Transplante de Coração/efeitos adversos , Imunossupressores/uso terapêutico , Transplante Homólogo/efeitos adversos , Adulto , Idoso , Biomarcadores , Biópsia , Estudos de Casos e Controles , Análise por Conglomerados , Estudos de Coortes , Endocárdio/patologia , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/tratamento farmacológico , Rejeição de Enxerto/genética , Rejeição de Enxerto/patologia , Transplante de Coração/imunologia , Humanos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Estudos Prospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Homólogo/imunologia
7.
Blood ; 100(1): 72-9, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12070011

RESUMO

X-linked severe combined immunodeficiency (XSCID) is caused by mutations of the common gamma chain of cytokine receptors, gamma(c). Because bone marrow transplantation (BMT) for XSCID does not provide complete immune reconstitution for many patients and because of the natural selective advantage conferred on lymphoid progenitors by the expression of normal gamma(c), XSCID is a good candidate disease for therapeutic retroviral gene transfer to hematopoietic stem cells. We studied XSCID patients who have persistent defects in B-cell and/or combined B- and T-cell function despite having received T cell-depleted haploidentical BMT. We compared transduction of autologous B-cell lines and granulocyte colony-stimulating factor-mobilized peripheral CD34(+) cells from these patients using an MFGS retrovirus vector containing the gamma(c) gene IL2RG pseudotyped with amphotropic, gibbon ape leukemia virus, or RD114 envelopes. Transduced B-cell lines and peripheral CD34(+) cells demonstrated provirus integration and new cell-surface gamma(c) expression. The chimeric sheep model was exploited to test development of XSCID CD34(+) cells into mature myeloid and lymphoid lineages. Transduced and untransduced XSCID CD34(+) cells injected into developing sheep fetuses gave rise to myeloid cells. However, only transduced gamma progenitors from XSCID patients developed into T and B cells. These results suggest that gene transfer to autologous peripheral CD34(+) cells using MFGS-gc retrovirus may benefit XSCID patients with persistent T- and B-cell deficits despite prior BMT.


Assuntos
Terapia Genética/métodos , Células-Tronco Hematopoéticas/metabolismo , Receptores de Interleucina-2/genética , Imunodeficiência Combinada Severa/terapia , Animais , Antígenos CD34 , Linfócitos B/metabolismo , Linfócitos B/patologia , Linfócitos B/transplante , Linhagem da Célula , Criança , Pré-Escolar , Ligação Genética , Vetores Genéticos , Transplante de Células-Tronco Hematopoéticas , Humanos , Lactente , Modelos Animais , Mutação , Subunidades Proteicas , Receptores de Interleucina-2/química , Receptores de Interleucina-2/uso terapêutico , Retroviridae/genética , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/patologia , Ovinos , Linfócitos T/citologia , Transdução Genética/métodos , Quimeras de Transplante , Cromossomo X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA