Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chin Med Assoc ; 87(5): 488-497, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451105

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have promising potential in clinical application, whereas their limited amount and sources hinder their bioavailability. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have become prominent options in regenerative medicine as both possess the ability to differentiate into MSCs. METHODS: Recently, our research team has successfully developed human leukocyte antigen (HLA)-homozygous iPSC cell lines with high immune compatibility, covering 13.5% of the Taiwanese population. As we deepen our understanding of the differences between these ESCs and HLA-homozygous iPSCs, our study focused on morphological observations and flow cytometry analysis of specific surface marker proteins during the differentiation of ESCs and iPSCs into MSCs. RESULTS: The results showed no significant differences between the two pluripotent stem cells, and both of them demonstrated the equivalent ability to further differentiate into adipose, cartilage, and bone cells. CONCLUSION: Our research revealed that these iPSCs with high immune compatibility exhibit the same differentiation potential as ESCs, enhancing the future applicability of highly immune-compatible iPSCs.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Células-Tronco Embrionárias/citologia , Células-Tronco Mesenquimais , Mesoderma/citologia , Células Cultivadas
2.
Cells ; 12(22)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37998352

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) hold promise for cell-based therapy, yet the sourcing, quality, and invasive methods of MSCs impede their mass production and quality control. Induced pluripotent stem cell (iPSC)-derived MSCs (iMSCs) can be infinitely expanded, providing advantages over conventional MSCs in terms of meeting unmet clinical demands. METHODS: The potential of MSC therapy for Leber's hereditary optic neuropathy (LHON) remains uncertain. In this study, we used HLA-homozygous induced pluripotent stem cells to generate iMSCs using a defined protocol, and we examined their therapeutic potential in rotenone-induced LHON-like models in vitro and in vivo. RESULTS: The iMSCs did not cause any tumorigenic incidence or inflammation-related lesions after intravitreal transplantation, and they remained viable for at least nine days in the mouse recipient's eyes. In addition, iMSCs exhibited significant efficacy in safeguarding retinal ganglion cells (RGCs) from rotenone-induced cytotoxicity in vitro, and they ameliorated CGL+IPL layer thinning and RGC loss in vivo. Optical coherence tomography (OCT) and an electroretinogram demonstrated that iMSCs not only prevented RGC loss and impairments to the retinal architecture, but they also improved retinal electrophysiology performance. CONCLUSION: The generation of iMSCs via the HLA homozygosity of iPSCs offers a compelling avenue for overcoming the current limitations of MSC-based therapies. The results underscore the potential of iMSCs when addressing retinal disorders, and they highlight their clinical significance, offering renewed hope for individuals affected by LHON and other inherited retinal conditions.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Atrofia Óptica Hereditária de Leber , Camundongos , Animais , Atrofia Óptica Hereditária de Leber/induzido quimicamente , Atrofia Óptica Hereditária de Leber/terapia , Atrofia Óptica Hereditária de Leber/patologia , Rotenona/toxicidade , Células-Tronco Pluripotentes Induzidas/patologia , Células Ganglionares da Retina/patologia , Células-Tronco Mesenquimais/patologia
3.
J Chin Med Assoc ; 86(6): 539-541, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37027535

RESUMO

Optic neuropathies were estimated to affect 115 in 100,000 population in 2018. Leber's Hereditary Optic Neuropathy (LHON) as one of such optic neuropathy diseases that was first identified in 1871 and can be defined as a hereditary mitochondrial disease. LHON is associated with three mtDNA point mutations which are G11778A, T14484, and G3460A that affect the NADH dehydrogenase subunits of 4, 6, and 1, respectively. However, in most cases, only one point mutation is involved. Generally, in manifestation of the disease, there are no symptoms until the terminal dysfunction in the optic nerve is observed. Due to the mutations, nicotinamide adenine dinucleotide (NADH) dehydrogenase or complex I is absent and thus ATP production is stopped. This further causes the generation of reactive oxygen species and retina ganglion cells apoptosis. Aside from the mutations, there are several environmental factors such as smoking and alcohol consumption that can be pointed out as the risk factors of LHON. Nowadays, gene therapy has been intensively studied for LHON treatment. Disease models using human induced pluripotent stem cells (hiPSCs) have been utilized for LHON research.


Assuntos
Células-Tronco Pluripotentes Induzidas , Atrofia Óptica Hereditária de Leber , Humanos , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/terapia , Atrofia Óptica Hereditária de Leber/diagnóstico , Mutação , Mutação Puntual , DNA Mitocondrial/genética
4.
Cells ; 12(2)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672144

RESUMO

Induced pluripotent stem cells (iPSCs) can be differentiated into mesenchymal stem cells (iPSC-MSCs), retinal ganglion cells (iPSC-RGCs), and retinal pigmental epithelium cells (iPSC-RPEs) to meet the demand of regeneration medicine. Since the production of iPSCs and iPSC-derived cell lineages generally requires massive and time-consuming laboratory work, artificial intelligence (AI)-assisted approach that can facilitate the cell classification and recognize the cell differentiation degree is of critical demand. In this study, we propose the multi-slice tensor model, a modified convolutional neural network (CNN) designed to classify iPSC-derived cells and evaluate the differentiation efficiency of iPSC-RPEs. We removed the fully connected layers and projected the features using principle component analysis (PCA), and subsequently classified iPSC-RPEs according to various differentiation degree. With the assistance of the support vector machine (SVM), this model further showed capabilities to classify iPSCs, iPSC-MSCs, iPSC-RPEs, and iPSC-RGCs with an accuracy of 97.8%. In addition, the proposed model accurately recognized the differentiation of iPSC-RPEs and showed the potential to identify the candidate cells with ideal features and simultaneously exclude cells with immature/abnormal phenotypes. This rapid screening/classification system may facilitate the translation of iPSC-based technologies into clinical uses, such as cell transplantation therapy.


Assuntos
Aprendizado Profundo , Células-Tronco Pluripotentes Induzidas , Humanos , Inteligência Artificial , Epitélio Pigmentado da Retina , Diferenciação Celular
5.
J Chin Med Assoc ; 84(11): 987-992, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34524226

RESUMO

Oral cancers are the seventh most common cancer globally. While progresses in oral cancer treatment have been made, not all patients respond to these therapies in the same way. To overcome this difficulty, numerous studies have been devoted to identifying biomarkers, which enable early identification of patients who may benefit from a particular treatment modality or at risk for poor prognosis. Biomarkers are protein molecules, gene expression, DNA variants, or metabolites that are derived from tumors, adjacent normal tissue or bodily fluids, which can be acquired before treatment and during follow-up, thus extending their use to the evaluation of cancer progression and prediction of treatment outcome. In this review, we employed a basic significance level (<0.05) as the minimal requirement for candidate biomarkers. Effect sizes of the biomarkers in terms of odds ratio, hazard ratio, and area under the receiver operating characteristic curves were subsequently used to evaluate the potential of their clinical use. We identified the CCND1 from the tumor, human papillomavirus, HSP70, and IL-17 from the peripheral blood, and high density of CD45RO+ tumor-infiltrating lymphocytes as the clinically relevant biomarkers for oral cancers.


Assuntos
Biomarcadores Tumorais , Neoplasias Bucais/diagnóstico , Humanos , Neoplasias Bucais/genética , Neoplasias Bucais/fisiopatologia , Taiwan
6.
Anticancer Res ; 40(5): 2675-2685, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32366412

RESUMO

BACKGROUND/AIM: To evaluate the anti-cancer mechanism of N-Farnesyl-norcantharimide (NC15). MATERIALS AND METHODS: The viability of NC15-treated human leukemic Jurkat T (JKT) cells was assessed using the Kit-8 cell counting method. Flow cytometry analysis, human apoptosis antibody array assay, and whole genome sequencing were adopted to investigate the mechanism underlying the anti-cancer activity of NC15 in JKT cells. RESULTS: The growth inhibition rates of NC15 in JKT cells were about 80% and 95% after treatment with 8 µmol/l NC15 for 24 and 48 h, respectively. The percentages of NC15-treated JKT cells in the sub-G1 phase at 24 and 48 h were 22.0% and 34.3%, respectively, in contrast to the 1.5% in the control. Next-generation sequencing showed that many tumor suppressor genes (TSG) were up-regulated, while many genes associated with steroid biosynthesis, metabolic pathways, and fatty acid metabolism were down-regulated. CONCLUSION: NC15 can reduce the cell viability and increase the percentage of JKT cells in the sub-G1 phase by up-regulating TSG and related genes, and down-regulating the genes for steroid biosynthesis, metabolic pathways and fatty acid metabolism, instead of through apoptosis.


Assuntos
Cantaridina/análogos & derivados , Regulação para Baixo/efeitos dos fármacos , Ácidos Graxos/metabolismo , Genes Supressores de Tumor , Redes e Vias Metabólicas/genética , Esteroides/biossíntese , Linfócitos T/citologia , Regulação para Cima/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/genética , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Cantaridina/química , Cantaridina/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , DNA de Neoplasias/metabolismo , Regulação para Baixo/genética , Humanos , Células Jurkat , Redes e Vias Metabólicas/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Regulação para Cima/genética
7.
Anticancer Drugs ; 26(5): 508-17, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25588161

RESUMO

This study investigated the anticancer effects of two newly synthesized norcantharidin analogs, N-farnesyloxy-norcantharimide (NOC15) and N-farnesyl-norcantharimide (NC15), in L1210 cells and in a syngeneic mouse leukemia model (L1210 cell line plus DBA/2 mice). We found that the half-maximal inhibitory concentration (IC50) of NOC15 and NC15 on L1210 cells is 1.56 and 2.62 µmol/l, respectively, and that the IC50 of NOC15 and NC15 on human normal lymphoblast is 207.9 and 2569 µmol/l, respectively. In cell cycle analysis, NOC15 could increase the sub-G1 phase, whereas NC15 could induce G2/M arrest. Annexin-V apoptosis assay indicated that both NOC15 and NC15 could induce cell apoptosis. In the syngeneic mouse leukemia model, both NOC15 and NC15 could increase the survival days of mice and decrease the tumor weight. Moreover, both NOC15 and NC15 could retard the increase in peripheral blood leukocyte count due to L1210 cells. In the subcutaneous (s.c.) group, the treatment with NOC15 could retard the decrease in the weight of the liver and the spleen caused by L1210 cells, whereas the treatment with NC15 could retard the decrease in the weight of the spleen caused by L1210 cells. We conclude that the new compounds NOC15 and NC15 have strong anticancer activity and low toxicity both in vitro and in vivo. NOC15 and NC15 may have the potential to be developed into anticancer agents in the future.


Assuntos
Antineoplásicos/uso terapêutico , Cantaridina/análogos & derivados , Leucemia L1210/tratamento farmacológico , Animais , Anexina A5/metabolismo , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Cantaridina/uso terapêutico , Cantaridina/toxicidade , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Leucemia L1210/mortalidade , Leucemia L1210/patologia , Camundongos Endogâmicos DBA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA