Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958495

RESUMO

Positron emission tomography (PET) radioligands that bind with high-affinity to α4ß2-type nicotinic receptors (α4ß2Rs) allow for in vivo investigations of the mechanisms underlying nicotine addiction and smoking cessation. Here, we investigate the use of an image-derived arterial input function and the cerebellum for kinetic analysis of radioligand binding in mice. Two radioligands were explored: 2-[18F]FA85380 (2-FA), displaying similar pKa and binding affinity to the smoking cessation drug varenicline (Chantix), and [18F]Nifene, displaying similar pKa and binding affinity to nicotine. Time-activity curves of the left ventricle of the heart displayed similar distribution across wild type mice, mice lacking the ß2-subunit for ligand binding, and acute nicotine-treated mice, whereas reference tissue binding displayed high variation between groups. Binding potential estimated from a two-tissue compartment model fit of the data with the image-derived input function were higher than estimates from reference tissue-based estimations. Rate constants of radioligand dissociation were very slow for 2-FA and very fast for Nifene. We conclude that using an image-derived input function for kinetic modeling of nicotinic PET ligands provides suitable results compared to reference tissue-based methods and that the chemical properties of 2-FA and Nifene are suitable to study receptor response to nicotine addiction and smoking cessation therapies.


Assuntos
Receptores Nicotínicos , Tabagismo , Camundongos , Animais , Nicotina/farmacologia , Nicotina/metabolismo , Encéfalo/metabolismo , Tabagismo/metabolismo , Cinética , Ligantes , Tomografia por Emissão de Pósitrons/métodos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo
2.
Molecules ; 28(16)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37630292

RESUMO

In the field of nuclear medicine, the ß+ -emitting 43Sc and ß- -emitting 47Sc are promising candidates in cancer diagnosis and targeted radionuclide therapy (TRT) due to their favorable decay schema and shared pharmacokinetics as a true theranostic pair. Additionally, scandium is a group-3 transition metal (like 177Lu) and exhibits affinity for DOTA-based chelators, which have been studied in depth, making the barrier to implementation lower for 43/47Sc than for other proposed true theranostics. Before 43/47Sc can see widespread pre-clinical evaluation, however, an accessible production methodology must be established and each isotope's radiolabeling and animal imaging capabilities studied with a widely utilized tracer. As such, a simple means of converting an 18 MeV biomedical cyclotron to support solid targets and produce 43Sc via the 42Ca(d,n)43Sc reaction has been devised, exhibiting reasonable yields. The NatTi(γ,p)47Sc reaction is also investigated along with the successful implementation of chemical separation and purification methods for 43/47Sc. The conjugation of 43/47Sc with PSMA-617 at specific activities of up to 8.94 MBq/nmol and the subsequent imaging of LNCaP-ENZaR tumor xenografts in mouse models with both 43/47Sc-PSMA-617 are also presented.


Assuntos
Medicina Nuclear , Neoplasias da Próstata , Humanos , Animais , Camundongos , Masculino , Escândio , Medicina de Precisão , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radioisótopos/uso terapêutico
3.
Nat Biomed Eng ; 7(11): 1514-1529, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37308586

RESUMO

Topographical cues on cells can, through contact guidance, alter cellular plasticity and accelerate the regeneration of cultured tissue. Here we show how changes in the nuclear and cellular morphologies of human mesenchymal stromal cells induced by micropillar patterns via contact guidance influence the conformation of the cells' chromatin and their osteogenic differentiation in vitro and in vivo. The micropillars impacted nuclear architecture, lamin A/C multimerization and 3D chromatin conformation, and the ensuing transcriptional reprogramming enhanced the cells' responsiveness to osteogenic differentiation factors and decreased their plasticity and off-target differentiation. In mice with critical-size cranial defects, implants with micropillar patterns inducing nuclear constriction altered the cells' chromatin conformation and enhanced bone regeneration without the need for exogenous signalling molecules. Our findings suggest that medical device topographies could be designed to facilitate bone regeneration via chromatin reprogramming.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Camundongos , Humanos , Animais , Cromatina , Constrição , Regeneração Óssea
4.
Nanomaterials (Basel) ; 13(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36839041

RESUMO

Photodynamic therapy (PDT), the use of light to excite photosensitive molecules whose electronic relaxation drives the production of highly cytotoxic reactive oxygen species (ROS), has proven an effective means of oncotherapy. However, its application has been severely constrained to superficial tissues and those readily accessed either endoscopically or laparoscopically, due to the intrinsic scattering and absorption of photons by intervening tissues. Recent advances in the design of nanoparticle-based X-ray scintillators and photosensitizers have enabled hybridization of these moieties into single nanocomposite particles. These nanoplatforms, when irradiated with diagnostic doses and energies of X-rays, produce large quantities of ROS and permit, for the first time, non-invasive deep tissue PDT of tumors with few of the therapeutic limitations or side effects of conventional PDT. In this review we examine the underlying principles and evolution of PDT: from its initial and still dominant use of light-activated, small molecule photosensitizers that passively accumulate in tumors, to its latest development of X-ray-activated, scintillator-photosensitizer hybrid nanoplatforms that actively target cancer biomarkers. Challenges and potential remedies for the clinical translation of these hybrid nanoplatforms and X-ray PDT are also presented.

5.
Eur J Nucl Med Mol Imaging ; 49(12): 4014-4024, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35792927

RESUMO

PURPOSE: To identify the optimal threshold in 18F-fluoromisonidazole (FMISO) PET images to accurately locate tumor hypoxia by using electron paramagnetic resonance imaging (pO2 EPRI) as ground truth for hypoxia, defined by pO2 [Formula: see text] 10 mmHg. METHODS: Tumor hypoxia images in mouse models of SCCVII squamous cell carcinoma (n = 16) were acquired in a hybrid PET/EPRI imaging system 2 h post-injection of FMISO. T2-weighted MRI was used to delineate tumor and muscle tissue. Dynamic contrast enhanced (DCE) MRI parametric images of Ktrans and ve were generated to model tumor vascular properties. Images from PET/EPR/MRI were co-registered and resampled to isotropic 0.5 mm voxel resolution for analysis. PET images were converted to standardized uptake value (SUV) and tumor-to-muscle ratio (TMR) units. FMISO uptake thresholds were evaluated using receiver operating characteristic (ROC) curve analysis to find the optimal FMISO threshold and unit with maximum overall hypoxia similarity (OHS) with pO2 EPRI, where OHS = 1 shows perfect overlap and OHS = 0 shows no overlap. The means of dice similarity coefficient, normalized Hausdorff distance, and accuracy were used to define the OHS. Monotonic relationships between EPRI/PET/DCE-MRI were evaluated with the Spearman correlation coefficient ([Formula: see text]) to quantify association of vasculature on hypoxia imaged with both FMISO PET and pO2 EPRI. RESULTS: FMISO PET thresholds to define hypoxia with maximum OHS (both OHS = 0.728 [Formula: see text] 0.2) were SUV [Formula: see text] 1.4 [Formula: see text] SUVmean and SUV [Formula: see text] 0.6 [Formula: see text] SUVmax. Weak-to-moderate correlations (|[Formula: see text]|< 0.70) were observed between PET/EPRI hypoxia images with vascular permeability (Ktrans) or fractional extracellular-extravascular space (ve) from DCE-MRI. CONCLUSION: This is the first in vivo comparison of FMISO uptake with pO2 EPRI to identify the optimal FMISO threshold to define tumor hypoxia, which may successfully direct hypoxic tumor boosts in patients, thereby enhancing tumor control.


Assuntos
Carcinoma de Células Escamosas , Hipóxia Tumoral , Animais , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/patologia , Hipóxia Celular , Espectroscopia de Ressonância de Spin Eletrônica , Hipóxia/diagnóstico por imagem , Camundongos , Misonidazol/análogos & derivados , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Tomografia Computadorizada por Raios X
6.
Radiol Imaging Cancer ; 3(2): e200104, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33817651

RESUMO

Purpose: To enhance the spatial accuracy of fluorine 18 (18F) misonidazole (MISO) PET imaging of hypoxia by using dynamic contrast-enhanced (DCE) MR images as a basis for modifying PET images and by using electron paramagnetic resonance (EPR) partial oxygen pressure (pO2) as the reference standard. Materials and Methods: Mice (n = 10) with leg-borne MCa4 mammary carcinomas underwent EPR imaging, T2-weighted and DCE MRI, and 18F-MISO PET/CT. Images were registered to the same space for analysis. The thresholds of hypoxia for PET and EPR images were tumor-to-muscle ratios greater than or equal to 2.2 mm Hg and less than or equal to 14 mm Hg, respectively. The Dice similarity coefficient (DSC) and Hausdorff distance (d H ) were used to quantify the three-dimensional overlap of hypoxia between pO2 EPR and 18F-MISO PET images. A training subset (n = 6) was used to calculate optimal DCE MRI weighting coefficients to relate EPR to the PET signal; the group average weights were then applied to all tumors (from six training mice and four test mice). The DSC and d H were calculated before and after DCE MRI-corrected PET images were obtained to quantify the improvement in overlap with EPR pO2 images for measuring tumor hypoxia. Results: The means and standard deviations of the DSC and d H between hypoxic regions in original PET and EPR images were 0.35 mm ± 0.23 and 5.70 mm ± 1.7, respectively, for images of all 10 mice. After implementing a preliminary DCE MRI correction to PET data, the DSC increased to 0.86 mm ± 0.18 and the d H decreased to 2.29 mm ± 0.70, showing significant improvement (P < .001) for images of all 10 mice. Specifically, for images of the four independent test mice, the DSC improved with correction from 0.19 ± 0.28 to 0.80 ± 0.29 (P = .02), and the d H improved from 6.40 mm ± 2.5 to 1.95 mm ± 0.63 (P = .01). Conclusion: Using EPR information as a reference standard, DCE MRI information can be used to correct 18F-MISO PET information to more accurately reflect areas of hypoxia.Keywords: Animal Studies, Molecular Imaging, Molecular Imaging-Cancer, PET/CT, MR-Dynamic Contrast Enhanced, MR-Imaging, PET/MR, Breast, Oncology, Tumor Mircoenvironment, Electron Paramagnetic ResonanceSupplemental material is available for this article.© RSNA, 2021.


Assuntos
Misonidazol , Hipóxia Tumoral , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Hipóxia/diagnóstico por imagem , Imageamento por Ressonância Magnética , Camundongos , Oxigênio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons
7.
Angew Chem Int Ed Engl ; 59(35): 15161-15165, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32415874

RESUMO

Herein, we report the development of an 18 F-labeled, activity-based small-molecule probe targeting the cancer-associated serine hydrolase NCEH1. We undertook a focused medicinal chemistry campaign to simultaneously preserve potent and specific NCEH1 labeling in live cells and animals, while permitting facile 18 F radionuclide incorporation required for PET imaging. The resulting molecule, [18 F]JW199, labels active NCEH1 in live cells at nanomolar concentrations and greater than 1000-fold selectivity relative to other serine hydrolases. [18 F]JW199 displays rapid, NCEH1-dependent accumulation in mouse tissues. Finally, we demonstrate that [18 F]JW199 labels aggressive cancer tumor cells in vivo, which uncovered localized NCEH1 activity at the leading edge of triple-negative breast cancer tumors, suggesting roles for NCEH1 in tumor aggressiveness and metastasis.


Assuntos
Radioisótopos de Flúor/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos , Esterol Esterase/metabolismo , Animais , Feminino , Humanos , Camundongos
8.
J Nucl Med ; 57(2): 279-84, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26564318

RESUMO

UNLABELLED: There is strong clinical interest in using neural stem cells (NSCs) as carriers for targeted delivery of therapeutics to glioblastoma. Multimodal dynamic in vivo imaging of NSC behaviors in the brain is necessary for developing such tailored therapies; however, such technology is lacking. Here we report a novel strategy for mesoporous silica nanoparticle (MSN)-facilitated NSC tracking in the brain via SPECT. METHODS: (111)In was conjugated to MSNs, taking advantage of the large surface area of their unique porous feature. A series of nanomaterial characterization assays was performed to assess the modified MSN. Loading efficiency and viability of NSCs with (111)In-MSN complex were optimized. Radiolabeled NSCs were administered to glioma-bearing mice via either intracranial or systemic injection. SPECT imaging and bioluminescence imaging were performed daily up to 48 h after NSC injection. Histology and immunocytochemistry were used to confirm the findings. RESULTS: (111)In-MSN complexes show minimal toxicity to NSCs and robust in vitro and in vivo stability. Phantom studies demonstrate feasibility of this platform for NSC imaging. Of significance, we discovered that decayed (111)In-MSN complexes exhibit strong fluorescent profiles in preloaded NSCs, allowing for ex vivo validation of the in vivo data. In vivo, SPECT visualizes actively migrating NSCs toward glioma xenografts in real time after both intracranial and systemic administrations. This is in agreement with bioluminescence live imaging, confocal microscopy, and histology. CONCLUSION: These advancements warrant further development and integration of this technology with MRI for multimodal noninvasive tracking of therapeutic NSCs toward various brain malignancies.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Células-Tronco Neurais/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Linhagem Celular Tumoral , Humanos , Radioisótopos de Índio/efeitos adversos , Radioisótopos de Índio/farmacocinética , Marcação por Isótopo , Imageamento por Ressonância Magnética , Camundongos , Camundongos Nus , Imagem Multimodal , Nanopartículas , Imagens de Fantasmas , Compostos Radiofarmacêuticos/efeitos adversos , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA