RESUMO
BACKGROUND: The prevalence of diabetes mellitus worldwide has increased in recent decades. Maintaining the level of blood glucose is the most basic and important issue for diabetics. This study aimed to investigate the hypoglycemic activity of a combination of hypoglycemic peptide-enriched hydrolysates of Corbicula fluminea (ACH) and Chlorella sorokiniana (PCH). RESULTS: Combined supplementation of ACH and PCH synergistically inhibited α-glucosidase and DPP4 activities in vitro. After 4 weeks of treatment with ACH and/or PCH, the plasma glucose concentration and insulin, homeostasis model assessment-estimated insulin resistance (HOMA-IR), total cholesterol (TC) and triglyceride (TG) levels significantly decreased. The hypoglycemic peptides in ACH and PCH were purified and assayed for α-glucosidase and DPP4 activity. The hypoglycemic peptides in ACH and PCH effectively decreased α-glucosidase and DPP4 activities. In silico assays showed that these two peptide types have different docking poses, which determined their inhibitory effect against α-glucosidase and DPP4 activity. CONCLUSION: Combined treatment with hypoglycemic peptide-enriched ACH and PCH could modulate blood glucose by synergistically inhibiting α-glucosidase and DPP4 activities. © 2021 Society of Chemical Industry.
Assuntos
Chlorella/química , Corbicula/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Inibidores de Glicosídeo Hidrolases/administração & dosagem , Hipoglicemiantes/administração & dosagem , Peptídeos/administração & dosagem , Extratos Vegetais/administração & dosagem , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/metabolismo , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/química , Sinergismo Farmacológico , Inibidores de Glicosídeo Hidrolases/química , Humanos , Hipoglicemiantes/química , Masculino , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , alfa-Glucosidases/química , alfa-Glucosidases/metabolismoRESUMO
This research focuses on cobia skin hydrolysates and their antihypertensive effects via the inhibitory activities of angiotensin I-converting enzyme (ACE). Marine fish Cobia (Rachycentron canadum) skin was hydrolysed for 5 h using Protamex and Protease N to obtain the cobia skin protein hydrolysates PX-5 and PN-5, respectively. The soluble protein and peptide contents of the PX-5 were 612 and 270 mg/g, respectively, and for the PN-5, 531 and 400 mg/g, respectively. The IC50 of PX-5 and PN-5 on ACE was 0.221 and 0.291 mg/mL, respectively. Increasing the IC50 from 0.221 to 0.044 mg/mL by simulated gastrointestinal digestion (PX-5G) reduced the ACE-inhibitory capacity of PX-5. Using gel filtration chromatography, the PX-5G was fractioned into eight fractions. The molecular weight of the fifth fraction from PX-5G was between 630 and 450 Da, and the highest inhibitory efficiency ratio on ACE was 1552.4%/mg/mL. We identified four peptide sequences: Trp-Ala-Ala, Ala-Trp-Trp, Ile-Trp-Trp, and Trp-Leu, with IC50 values for ACE of 118.50, 9.40, 0.51, and 26.80 µM, respectively. At a dose of 600 mg PX-5 powder/kg body weight, in spontaneously hypertensive rats PX-5's antihypertensive effect significantly reduced systolic and diastolic blood pressure by 21.9 and 15.5 mm Hg, respectively, after 4 h of oral gavage.
Assuntos
Anti-Hipertensivos/farmacologia , Peixes , Peptídeos/farmacologia , Hidrolisados de Proteína/farmacologia , Pele/química , Sequência de Aminoácidos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Cromatografia em Gel , Digestão , Hipertensão/tratamento farmacológico , Peso Molecular , Ratos , Ratos Endogâmicos SHRRESUMO
Hot water was used to obtain Chlorella sorokiniana hot water extract (HWE). Subsequently, this byproduct was freeze-dried, hydrolysed at 50 °C using Protease N to obtain C. sorokiniana protein hydrolysates (PN-1), and then digested with a gastrointestinal enzyme (PN-1G). The inhibitory effects of the HWE and hydrolysates against angiotensin I-converting enzyme (ACE) were investigated. The soluble protein and peptide contents were 379.9 and 179.7 mg/g, respectively, for HWE and 574.8 and 332.8 mg/g, respectively, for PN-1. The IC50 values of the HWE, PN-1, and PN-1G on ACE were 1.070, 0.035, and 0.044 mg/mL, respectively. PN-1G was separated into seven fractions through size exclusion chromatography. The sixth fraction of the hydrolysate had a molecular weight between 270 and 340 Da, and the lowest IC50 value on ACE was 0.015 mg/mL. The amino acid sequences of the ACE-inhibitory peptides were Trp-Val, Val-Trp, Ile-Trp, and Leu-Trp, of which the IC50 values were 307.61, 0.58, 0.50, and 1.11 µΜ, respectively. Systolic blood pressure and diastolic blood pressure were reduced 20 and 21 mm Hg, respectively, in spontaneously hypertensive rats after 6 h of oral administration with a dose of 171.4 mg PN-1 powder/kg body weight.