Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35015630

RESUMO

Alteration of antibiotic binding sites through modification of ribosomal RNA (rRNA) is a common form of resistance to ribosome-targeting antibiotics. The rRNA-modifying enzyme Cfr methylates an adenosine nucleotide within the peptidyl transferase center, resulting in the C-8 methylation of A2503 (m8A2503). Acquisition of cfr results in resistance to eight classes of ribosome-targeting antibiotics. Despite the prevalence of this resistance mechanism, it is poorly understood whether and how bacteria modulate Cfr methylation to adapt to antibiotic pressure. Moreover, direct evidence for how m8A2503 alters antibiotic binding sites within the ribosome is lacking. In this study, we performed directed evolution of Cfr under antibiotic selection to generate Cfr variants that confer increased resistance by enhancing methylation of A2503 in cells. Increased rRNA methylation is achieved by improved expression and stability of Cfr through transcriptional and post-transcriptional mechanisms, which may be exploited by pathogens under antibiotic stress as suggested by natural isolates. Using a variant that achieves near-stoichiometric methylation of rRNA, we determined a 2.2 Å cryo-electron microscopy structure of the Cfr-modified ribosome. Our structure reveals the molecular basis for broad resistance to antibiotics and will inform the design of new antibiotics that overcome resistance mediated by Cfr.


Antibiotics treat or prevent infections by killing bacteria or slowing down their growth. A large proportion of these drugs do this by disrupting an essential piece of cellular machinery called the ribosome which the bacteria need to make proteins. However, over the course of the treatment, some bacteria may gain genetic alterations that allow them to resist the effects of the antibiotic. Antibiotic resistance is a major threat to global health, and understanding how it emerges and spreads is an important area of research. Recent studies have discovered populations of resistant bacteria carrying a gene for a protein named chloramphenicol-florfenicol resistance, or Cfr for short. Cfr inserts a small modification in to the ribosome that prevents antibiotics from inhibiting the production of proteins, making them ineffective against the infection. To date, Cfr has been found to cause resistance to eight different classes of antibiotics. Identifying which mutations enhance its activity and protect bacteria is vital for designing strategies that fight antibiotic resistance. To investigate how the gene for Cfr could mutate and make bacteria more resistant, Tsai et al. performed a laboratory technique called directed evolution, a cyclic process which mimics natural selection. Genetic changes were randomly introduced in the gene for the Cfr protein and bacteria carrying these mutations were treated with tiamulin, an antibiotic rendered ineffective by the modification Cfr introduces into the ribosome. Bacteria that survived were then selected and had more mutations inserted. By repeating this process several times, Tsai et al. identified 'super' variants of the Cfr protein that lead to greater resistance. The experiments showed that these variants boosted resistance by increasing the proportion of ribosomes that contained the protective modification. This process was facilitated by mutations that enabled higher levels of Cfr protein to accumulate in the cell. In addition, the current study allowed, for the first time, direct visualization of how the Cfr modification disrupts the effect antibiotics have on the ribosome. These findings will make it easier for clinics to look out for bacteria that carry these 'super' resistant mutations. They could also help researchers design a new generation of antibiotics that can overcome resistance caused by the Cfr protein.


Assuntos
Evolução Molecular Direcionada/métodos , Resistência Microbiana a Medicamentos/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Metiltransferases/genética , RNA Ribossômico/genética , Adenosina/metabolismo , Antibacterianos/farmacologia , Sítios de Ligação , Escherichia coli/efeitos dos fármacos , Metilação
2.
Artigo em Inglês | MEDLINE | ID: mdl-31685464

RESUMO

Cfr is a radical S-adenosyl-l-methionine (SAM) enzyme that confers cross-resistance to antibiotics targeting the 23S rRNA through hypermethylation of nucleotide A2503. Three cfr-like genes implicated in antibiotic resistance have been described, two of which, cfr(B) and cfr(C), have been sporadically detected in Clostridium difficile However, the methylase activity of Cfr(C) has not been confirmed. We found cfr(B), cfr(C), and a cfr-like gene that shows only 51 to 58% protein sequence identity to Cfr and Cfr-like enzymes in clinical C. difficile isolates recovered across nearly a decade in Mexico, Honduras, Costa Rica, and Chile. This new resistance gene was termed cfr(E). In agreement with the anticipated function of the cfr-like genes detected, all isolates exhibited high MIC values for several ribosome-targeting antibiotics. In addition, in vitro assays confirmed that Cfr(C) and Cfr(E) methylate Escherichia coli and, to a lesser extent, C. difficile 23S rRNA fragments at the expected positions. The analyzed isolates do not have mutations in 23S rRNA genes or genes encoding the ribosomal proteins L3 and L4 and lack poxtA, optrA, and pleuromutilin resistance genes. Moreover, these cfr-like genes were found in Tn6218-like transposons or integrative and conjugative elements (ICE) that could facilitate their transfer. These results indicate selection of potentially mobile cfr-like genes in C. difficile from Latin America and provide the first assessment of the methylation activity of Cfr(C) and Cfr(E), which belong to a cluster of Cfr-like proteins that does not include the functionally characterized enzymes Cfr, Cfr(B), and Cfr(D).


Assuntos
Clostridioides difficile/genética , Genes Bacterianos , Proteínas de Bactérias/genética , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Sequências Repetitivas Dispersas , América Latina/epidemiologia , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 23S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA