Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 316(5): C621-C631, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30726115

RESUMO

Polymerase-δ-interacting protein 2 (Poldip2) controls a wide variety of cellular functions and vascular pathologies. To mediate these effects, Poldip2 interacts with numerous proteins and generates reactive oxygen species via the enzyme NADPH oxidase 4 (Nox4). We have previously shown that Poldip2 can activate the Rho family GTPase RhoA, another signaling node within the cell. In this study, we aimed to better understand how Poldip2 activates Rho family GTPases and the functions of the involved proteins in vascular smooth muscle cells (VSMCs). RhoA is activated by guanine nucleotide exchange factors. Using nucleotide-free RhoA (isolated from bacteria) to pulldown active RhoGEFs, we found that the RhoGEF epithelial cell transforming sequence 2 (Ect2) is activated by Poldip2. Ect2 is a critical RhoGEF for Poldip2-mediated RhoA activation, because siRNA against Ect2 prevented Poldip2-mediated RhoA activity (measured by rhotekin pulldowns). Surprisingly, we were unable to detect a direct interaction between Poldip2 and Ect2, as they did not coimmunoprecipitate. Nox4 is not required for Poldip2-driven Ect2 activation, as Poldip2 overexpression induced Ect2 activation in Nox4 knockout VSMCs similar to wild-type cells. However, antioxidant treatment blocked Poldip2-induced Ect2 activation. This indicates a novel reactive oxygen species-driven mechanism by which Poldip2 regulates Rho family GTPases. Finally, we examined the function of these proteins in VSMCs, using siRNA against Poldip2 or Ect2 and determined that Poldip2 and Ect2 are both essential for vascular smooth muscle cell cytokinesis and proliferation.


Assuntos
Músculo Liso Vascular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Animais , Proliferação de Células/fisiologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley
2.
J Clin Invest ; 122(1): 408-18, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22156199

RESUMO

In hematologic diseases, such as sickle cell disease (SCD) and hemolytic uremic syndrome (HUS), pathological biophysical interactions among blood cells, endothelial cells, and soluble factors lead to microvascular occlusion and thrombosis. Here, we report an in vitro "endothelialized" microfluidic microvasculature model that recapitulates and integrates this ensemble of pathophysiological processes. Under controlled flow conditions, the model enabled quantitative investigation of how biophysical alterations in hematologic disease collectively lead to microvascular occlusion and thrombosis. Using blood samples from patients with SCD, we investigated how the drug hydroxyurea quantitatively affects microvascular obstruction in SCD, an unresolved issue pivotal to understanding its clinical efficacy in such patients. In addition, we demonstrated that our microsystem can function as an in vitro model of HUS and showed that shear stress influences microvascular thrombosis/obstruction and the efficacy of the drug eptifibatide, which decreases platelet aggregation, in the context of HUS. These experiments establish the versatility and clinical relevance of our microvasculature-on-a-chip model as a biophysical assay of hematologic pathophysiology as well as a drug discovery platform.


Assuntos
Doenças Hematológicas/etiologia , Técnicas Analíticas Microfluídicas , Microvasos/patologia , Microvasos/fisiopatologia , Trombose/etiologia , Anemia Falciforme/sangue , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/patologia , Anemia Falciforme/fisiopatologia , Eptifibatida , Doenças Hematológicas/tratamento farmacológico , Doenças Hematológicas/patologia , Doenças Hematológicas/fisiopatologia , Síndrome Hemolítico-Urêmica/sangue , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Síndrome Hemolítico-Urêmica/patologia , Síndrome Hemolítico-Urêmica/fisiopatologia , Hemorreologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidroxiureia/farmacologia , Técnicas In Vitro , Microscopia de Fluorescência , Microvasos/efeitos dos fármacos , Modelos Cardiovasculares , Peptídeos/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Trombose/tratamento farmacológico , Trombose/patologia , Trombose/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA