Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
BMC Cancer ; 23(1): 1088, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950151

RESUMO

BACKGROUND: Cancer stem cells form a rare cell population in tumors that contributes to metastasis, recurrence and chemoresistance in cancer patients. Circular RNAs (circRNAs) are post-transcriptional regulators of gene expression that sponge targeted microRNA (miRNAs) to affect a multitude of downstream cellular processes. We previously showed in an expression profiling study that circZNF800 (hsa_circ_0082096) was up-regulated in cancer stem cell-enriched spheroids derived from colorectal cancer (CRC) cell lines. METHODS: Spheroids were generated in suspension spheroidal culture. The ZNF800 mRNA, pluripotency stem cell markers and circZNF800 levels were determined by quantitative RT-PCR. CircZNF800-miRNA interactions were shown in RNA pulldown assays and the miRNA levels determined by stem-loop qRT-PCR. The effects of circZNF800 on cell proliferation were tested by EdU staining followed by flowcytometry. Expression of stem cell markers CD44/CD133, Lgr5 and SOX9 was demonstrated in immunofluorescence microscopy. To manipulate the cellular levels of circZNF800, circZNF800 over-expression was achieved via transfection of in vitro synthesized and circularized circZNF800, and knockdown attained using a CRISPR-Cas13d-circZNF800 vector system. Xenografted nude mice were used to demonstrate effects of circZNF800 over-expression and knockdown on tumor growth in vivo. RESULTS: CircZNF800 was shown to be over-expressed in late-stage tumor tissues of CRC patients. Data showed that circZNF800 impeded expression of miR-140-3p, miR-382-5p and miR-579-3p while promoted the mRNA levels of ALK/ACVR1C, FZD3 and WNT5A targeted by the miRNAs, as supported by alignments of seed sequences between the circZNF800-miRNA, and miRNA-mRNA paired interactions. Analysis in CRC cells and biopsied tissues showed that circZNF800 positively regulated the expression of intestinal stem cell, pluripotency and cancer stem cell markers, and promoted CRC cell proliferation, spheroid and colony formation in vitro, all of which are cancer stem cell properties. In xenografted mice, circZNF800 over-expression promoted tumor growth, while circZNF800 knockdown via administration of CRISPR Cas13d-circZNF800 viral particles at the CRC tumor sites impeded tumor growth. CONCLUSIONS: CircZNF800 is an oncogenic factor that regulate cancer stem cell properties to lead colorectal tumorigenesis, and may be used as a predictive marker for tumor progression and the CRISPR Cas13d-circZNF800 knockdown strategy for therapeutic intervention of colorectal cancer.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Animais , Camundongos , RNA Circular/genética , Camundongos Nus , Neoplasias Colorretais/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , RNA Mensageiro , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Receptores de Ativinas Tipo I
2.
J Adv Res ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37557954

RESUMO

BACKGROUND: Modifications of lipid metabolism were closely associated with the manifestations and prognosis of coronavirus disease of 2019 (COVID-19). Pre-existing metabolic conditions exacerbated the severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection while modulations of aberrant lipid metabolisms alleviated the manifestations. To elucidate the underlying mechanisms, an experimental platform that reproduces human respiratory physiology is required. METHODS: Here we generated induced pluripotent stem cell-derived airway organoids (iPSC-AOs) that resemble the human native airway. Single-cell sequencing (ScRNAseq) and microscopic examination verified the cellular heterogeneity and microstructures of iPSC-AOs, respectively. We subjected iPSC-AOs to SARS-CoV-2 infection and investigated the treatment effect of lipid modifiers statin drugs on viral pathogenesis, gene expression, and the intracellular trafficking of the SARS-CoV-2 entry receptor angiotensin-converting enzyme-2 (ACE-2). RESULTS: In SARS-CoV-2-infected iPSC-AOs, immunofluorescence staining detected the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins and bioinformatics analysis further showed the aberrant enrichment of lipid-associated pathways. In addition, SARS-CoV-2 hijacked the host RNA replication machinery and generated the new isoforms of a high-density lipoprotein constituent apolipoprotein A1 (APOA1) and the virus-scavenging protein deleted in malignant brain tumors 1 (DMBT1). Manipulating lipid homeostasis using cholesterol-lowering drugs (e.g. Statins) relocated the viral entry receptor angiotensin-converting enzyme-2 (ACE-2) and decreased N protein expression, leading to the reduction of SARS-CoV-2 entry and replication. The same lipid modifications suppressed the entry of luciferase-expressing SARS-CoV-2 pseudoviruses containing the S proteins derived from different SARS-CoV-2 variants, i.e. wild-type, alpha, delta, and omicron. CONCLUSIONS: Together, our data demonstrated that modifications of lipid pathways restrict SARS-CoV-2 propagation in the iPSC-AOs, which the inhibition is speculated through the translocation of ACE2 from the cell membrane to the cytosol. Considering the highly frequent mutation and generation of SARS-CoV-2 variants, targeting host metabolisms of cholesterol or other lipids may represent an alternative approach against SARS-CoV-2 infection.

3.
J Chin Med Assoc ; 85(3): 276-278, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35259130

RESUMO

X-linked juvenile retinoschisis (XLRS) is one of the common early-onset hereditary retinal degenerative diseases in men. The common symptoms of XLRS range from mild to severe central vision loss and radial stripes created by the fovea, the division of the inner layer of the retina in the peripheral retina and the significant decrease in b-wave amplitude (ERG). Retinoschisin, the 224-amino-acid protein product of the retinoschisis 1 (RS1) gene, contains a discoid domain as the primary structural unit, an N-terminal cleavable signal sequence, and an oligomerization-area component. Retinoschisin is a homo-octamer complex with disulfide links that are released by retinal cells. It helps preserve the retina's integrity by binding to the surface of photoreceptors and bipolar cells. As a recessive genetic disease, XLRS was usually treated by prescribing low vision aids in most clinical cases. A gene replacement therapy based on adeno-associated virus vectors was initiated and showed a breakthrough in treating XLRS in 2014. Understanding the revolution of gene therapy for treating XLRS may accelerate its development and make this gene therapy the template for developing therapeutics against other inherited retinal diseases.


Assuntos
Retinosquise , Eletrorretinografia , Proteínas do Olho/genética , Terapia Genética , Humanos , Masculino , Retina , Retinosquise/genética , Retinosquise/metabolismo , Retinosquise/terapia
4.
Cancer Res ; 82(1): 75-89, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34753774

RESUMO

Lung cancers are the leading cause of cancer-related mortality worldwide, and the majority of lung cancers are non-small cell lung carcinoma (NSCLC). Overexpressed or activated EGFR has been associated with a poor prognosis in NSCLC. We previously identified a circular noncoding RNA, hsa_circ_0000190 (C190), as a negative prognostic biomarker of lung cancer. Here, we attempted to dissect the mechanistic function of C190 and test the potential of C190 as a therapeutic target in NSCLC. C190 was upregulated in both NSCLC clinical samples and cell lines. Activation of the EGFR pathway increased C190 expression through a MAPK/ERK-dependent mechanism. Transient and stable overexpression of C190 induced ERK1/2 phosphorylation, proliferation, and migration in vitro and xenograft tumor growth in vivo. RNA sequencing and Expression2Kinases (X2K) analysis indicated that kinases associated with cell-cycle and global translation are involved in C190-activated networks, including CDKs and p70S6K, which were further validated by immunoblotting. CRISPR/Cas13a-mediated knockdown of C190 decreased proliferation and migration of NSCLC cells in vitro and suppressed tumor growth in vivo. TargetScan and CircInteractome databases predicted that C190 targets CDKs by sponging miR-142-5p. Analysis of clinical lung cancer samples showed that C190, CDK1, and CDK6 expressions were significantly higher in advanced-stage lung cancer than in early-stage lung cancer. In summary, C190 is directly involved in EGFR-MAPK-ERK signaling and may serve as a potential therapeutic target for the treatment of NSCLC. SIGNIFICANCE: The circRNA C190 is identified as a mediator of multiple pro-oncogenic signaling pathways in lung cancer and can be targeted to suppress tumor progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Oncogenes/genética , RNA Circular/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus
5.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34576032

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic with high infectivity and mortality has caused severe social and economic impacts worldwide. Growing reports of COVID-19 patients with multi-organ damage indicated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) may also disturb the cardiovascular system. Herein, we used human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) as the in vitro platform to examine the consequence of SARS-CoV2 infection on iCMs. Differentiated iCMs expressed the primary SARS-CoV2 receptor angiotensin-converting enzyme-II (ACE2) and the transmembrane protease serine type 2 (TMPRSS2) receptor suggesting the susceptibility of iCMs to SARS-CoV2. Following the infection of iCMs with SARS-CoV2, the viral nucleocapsid (N) protein was detected in the host cells, demonstrating the successful infection. Bioinformatics analysis revealed that the SARS-CoV2 infection upregulates several inflammation-related genes, including the proinflammatory cytokine tumor necrosis factor-α (TNF-α). The pretreatment of iCMs with TNF-α for 24 h, significantly increased the expression of ACE2 and TMPRSS2, SASR-CoV2 entry receptors. The TNF-α pretreatment enhanced the entry of GFP-expressing SARS-CoV2 pseudovirus into iCMs, and the neutralization of TNF-α ameliorated the TNF-α-enhanced viral entry. Collectively, SARS-CoV2 elevated TNF-α expression, which in turn enhanced the SARS-CoV2 viral entry. Our findings suggest that, TNF-α may participate in the cytokine storm and aggravate the myocardial damage in COVID-19 patients.


Assuntos
COVID-19/complicações , Doenças Cardiovasculares/imunologia , Síndrome da Liberação de Citocina/imunologia , SARS-CoV-2/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Doenças Cardiovasculares/virologia , Diferenciação Celular , Linhagem Celular , Biologia Computacional , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Síndrome da Liberação de Citocina/patologia , Síndrome da Liberação de Citocina/virologia , Humanos , Células-Tronco Pluripotentes Induzidas , Miocárdio/citologia , Miocárdio/imunologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/virologia , Fosfoproteínas/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Regulação para Cima/imunologia , Internalização do Vírus/efeitos dos fármacos
6.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070492

RESUMO

Inherited retinal dystrophies (IRDs) are rare but highly heterogeneous genetic disorders that affect individuals and families worldwide. However, given its wide variability, its analysis of the driver genes for over 50% of the cases remains unexplored. The present study aims to identify novel driver genes, disease-causing variants, and retinitis pigmentosa (RP)-associated pathways. Using family-based whole-exome sequencing (WES) to identify putative RP-causing rare variants, we identified a total of five potentially pathogenic variants located in genes OR56A5, OR52L1, CTSD, PRF1, KBTBD13, and ATP2B4. Of the variants present in all affected individuals, genes OR56A5, OR52L1, CTSD, KBTBD13, and ATP2B4 present as missense mutations, while PRF1 and CTSD present as frameshift variants. Sanger sequencing confirmed the presence of the novel pathogenic variant PRF1 (c.124_128del) that has not been reported previously. More causal-effect or evidence-based studies will be required to elucidate the precise roles of these SNPs in the RP pathogenesis. Taken together, our findings may allow us to explore the risk variants based on the sequencing data and upgrade the existing variant annotation database in Taiwan. It may help detect specific eye diseases such as retinitis pigmentosa in East Asia.


Assuntos
Catepsina D/genética , Predisposição Genética para Doença , Distrofias Retinianas/genética , Adulto , Idoso , Catepsina D/sangue , Feminino , Mutação da Fase de Leitura , Ontologia Genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/genética , Mutação de Sentido Incorreto , Linhagem , Perforina/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Polimorfismo de Nucleotídeo Único , Mapas de Interação de Proteínas , Distrofias Retinianas/congênito , Distrofias Retinianas/patologia , Retinose Pigmentar/congênito , Retinose Pigmentar/diagnóstico por imagem , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Fatores de Risco , Tomografia de Coerência Óptica , Sequenciamento do Exoma
7.
J Gastroenterol Hepatol ; 36(11): 3196-3203, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34159651

RESUMO

BACKGROUND AND AIM: Size and number are major determinants of tumor burden in hepatocellular carcinoma (HCC). Patients with HCC undergoing transarterial chemoembolization (TACE) have variable outcomes due to heterogeneity of tumor burden. Recently, tumor burden score (TBS) was proposed to evaluate the extent of tumor involvement. However, the prognostic accuracy of TBS has not been well evaluated in HCC. This study aimed to assess its prognostic role in HCC patients undergoing TACE. METHODS: A total of 935 treatment-naïve HCC patients receiving TACE were retrospectively analyzed. Multivariate Cox proportional hazards model was used to determine independent prognostic predictors. RESULTS: Tumor burden score tended to increase with increasing size and number of tumors in study patients. The Cox model showed that serum creatinine ≥ 1.2 mg/dL (hazard ratio [HR]: 1.296, 95% confidence interval [CI]: 1.077-1.559, P = 0.006), serum α-fetoprotein ≥ 400 ng/dL (HR: 2.245, 95% CI: 1.905-2.645, P < 0.001), vascular invasion (HR: 1.870, 95% CI: 1.520-2.301, P < 0.001), medium TBS (HR: 1.489, 95% CI: 1.206-1.839, P < 0.001) and high TBS (HR: 2.563, 95% CI: 1.823-3.602, P < 0.001), albumin-bilirubin (ALBI) grade 2-3 (HR: 1.521, 95% CI: 1.291-1.792, P < 0.001), and performance status 1 (HR: 1.362, 95% CI: 1.127-1.647, P < 0.001) and status 2 (HR: 1.553, 95% CI: 1.237-1.948, P < 0.001) were associated with increased mortality. Patients with high TBS had poor overall survival in Barcelona Clinic Liver Cancer stage B/C and different ALBI grades. CONCLUSIONS: Tumor burden score is a feasible new prognostic surrogate marker of tumor burden in HCC and can well discriminate survival in patients undergoing TACE across different baseline characteristics.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Carga Tumoral , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Prognóstico , Reprodutibilidade dos Testes , Estudos Retrospectivos
8.
Hepatol Res ; 51(11): 1129-1138, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34038019

RESUMO

BACKGROUND: Liver functional reserve is a major prognostic determinant in patients with hepatocellular carcinoma (HCC). The albumin-bilirubin (ALBI) score is an objective method to assess the severity of cirrhosis in this setting. However, calculation of the ALBI score is complex and difficult to access in clinical practice. Recently, the EZ (easy)-ALBI score was proposed as an alternative biomarker of liver injury. We aimed to evaluate the prognostic role of the EZ-ALBI score in HCC from early to advanced stages. METHODS: A total of 3794 newly diagnosed HCC patients were prospectively enrolled and retrospectively analyzed. Independent prognostic predictors were determined by using the multivariate Cox proportional hazards model. RESULTS: The EZ-ALBI score showed good correlation with the ALBI score (correlation coefficient, 0.965; p < 0.001). The correlation of the EZ-ALBI score was highly preserved in different Child-Turcotte-Pugh (CTP) classifications, treatment methods, and Barcelona Clinic Liver Cancer (BCLC) stages (correlation coefficients, 0.90-0.97). In the Cox multivariate analysis, age >65 years, male sex, serum α-fetoprotein >20 ng/ml, large or multiple tumors, total tumor volume >100 cm3 , vascular invasion or distant metastasis, ascites, poor performance status, EZ-ALBI grade 2 and 3, and noncurative treatments were independently associated with increased mortality (all p < 0.05). Moreover, EZ-ALBI grade can stratify long-term survival in patients with different CTP class, treatment strategy, and BCLC stage. CONCLUSIONS: The EZ-ALBI score is an easy and feasible method to evaluate liver functional reserve. As a new prognostic biomarker in HCC, the predictive power of the EZ-ALBI grade is independent across different cancer stages and treatments.

10.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33579825

RESUMO

Atherosclerosis is characterized by the plaque formation that restricts intraarterial blood flow. The disturbed blood flow with the associated oscillatory stress (OS) at the arterial curvatures and branch points can trigger endothelial activation and is one of the risk factors of atherosclerosis. Many studies reported the mechanotransduction related to OS and atherogenesis; however, the transcriptional and posttranscriptional regulatory mechanisms of atherosclerosis remain unclear. Herein, we investigated the role of N6-methyladenosine (m6A) RNA methylation in mechanotransduction in endothelial cells (ECs) because of its important role in epitranscriptome regulation. We have identified m6A methyltransferase METTL3 as a responsive hub to hemodynamic forces and atherogenic stimuli in ECs. OS led to an up-regulation of METTL3 expression, accompanied by m6A RNA hypermethylation, increased NF-κB p65 Ser536 phosphorylation, and enhanced monocyte adhesion. Knockdown of METTL3 abrogated this OS-induced m6A RNA hypermethylation and other manifestations, while METTL3 overexpression led to changes resembling the OS effects. RNA-sequencing and m6A-enhanced cross-linking and immunoprecipitation (eCLIP) experiments revealed NLRP1 and KLF4 as two hemodynamics-related downstream targets of METTL3-mediated hypermethylation. The METTL3-mediated RNA hypermethylation up-regulated NLRP1 transcript and down-regulated KLF4 transcript through YTHDF1 and YTHDF2 m6A reader proteins, respectively. In the in vivo atherosclerosis model, partial ligation of the carotid artery led to plaque formation and up-regulation of METTL3 and NLRP1, with down-regulation of KLF4; knockdown of METTL3 via repetitive shRNA administration prevented the atherogenic process, NLRP3 up-regulation, and KLF4 down-regulation. Collectively, we have demonstrated that METTL3 serves a central role in the atherogenesis induced by OS and disturbed blood flow.


Assuntos
Adenosina/análogos & derivados , Aterosclerose/metabolismo , Endotélio Vascular/metabolismo , Metiltransferases/metabolismo , Processamento Pós-Transcricional do RNA , Adenosina/metabolismo , Animais , Aterosclerose/genética , Endotélio Vascular/patologia , Epigênese Genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteínas NLR/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células THP-1 , Transcriptoma
11.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008490

RESUMO

Lung cancer is the leading cause of death from cancer in Taiwan and throughout the world. Immunotherapy has revealed promising and significant efficacy in NSCLC, through immune checkpoint inhibition by blocking programmed cell death protein (PD)-1/PD-1 ligand (PD-L1) signaling pathway to restore patients' T-cell immunity. One novel type of long, non-coding RNAs, circular RNAs (circRNAs), are endogenous, stable, and widely expressed in tissues, saliva, blood, urine, and exosomes. Our previous results revealed that the plasma level of hsa_circ_0000190 can be monitored by liquid-biopsy-based droplet digital PCR and may serve as a valuable blood-based biomarker to monitor the disease progression and the efficacy of immunotherapy. In this study, hsa_circ_0000190 was shown to increase the PD-L1 mRNA-mediated soluble PD-L1 (sPD-L1) expression, consequently interfering with the efficacy of anti-PD-L1 antibody and T-cell activation, which may result in immunotherapy resistance and poor outcome. Our results unraveled that hsa_circ_0000190 facilitated the tumorigenesis and immune evasion of NSCLC by upregulating sPD-L1 expression, potentially developing a different aspect in elucidating the molecular immunopathogenesis of NSCLC. Hsa_circ_0000190 upregulation can be an effective indicator for the progression of NSCLC, and hsa_circ_0000190 downregulation may possess a potential therapeutic value for the treatment of NSCLC in combination with immunotherapy.


Assuntos
Antígeno B7-H1/genética , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Evasão da Resposta Imune/genética , Neoplasias Pulmonares/genética , RNA Circular/genética , Regulação para Cima/genética , Células A549 , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Regulação para Baixo/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Linfócitos T/fisiologia , Taiwan
12.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339321

RESUMO

Neuromuscular diseases (NMDs) belong to a class of functional impairments that cause dysfunctions of the motor neuron-muscle functional axis components. Inherited monogenic neuromuscular disorders encompass both muscular dystrophies and motor neuron diseases. Understanding of their causative genetic defects and pathological genetic mechanisms has led to the unprecedented clinical translation of genetic therapies. Challenged by a broad range of gene defect types, researchers have developed different approaches to tackle mutations by hijacking the cellular gene expression machinery to minimize the mutational damage and produce the functional target proteins. Such manipulations may be directed to any point of the gene expression axis, such as classical gene augmentation, modulating premature termination codon ribosomal bypass, splicing modification of pre-mRNA, etc. With the soar of the CRISPR-based gene editing systems, researchers now gravitate toward genome surgery in tackling NMDs by directly correcting the mutational defects at the genome level and expanding the scope of targetable NMDs. In this article, we will review the current development of gene therapy and focus on NMDs that are available in published reports, including Duchenne Muscular Dystrophy (DMD), Becker muscular dystrophy (BMD), X-linked myotubular myopathy (XLMTM), Spinal Muscular Atrophy (SMA), and Limb-girdle muscular dystrophy Type 2C (LGMD2C).


Assuntos
Edição de Genes/métodos , Terapia Genética/métodos , Doenças Neuromusculares/genética , Animais , Sistemas CRISPR-Cas , Ensaios Clínicos como Assunto , Humanos , Doenças Neuromusculares/terapia
13.
Cancer Cell Int ; 20(1): 597, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317545

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most lethal brain tumor characterized by high morbidity and limited treatment options. Tumor malignancy is usually associated with the epigenetic marks, which coordinate gene expression to ascertain relevant phenotypes. One of such marks is m6A modification of RNA, whose functional effects are dependent on the YTH family m6A reader proteins. METHODS AND RESULTS: In this study, we investigated the expression of five YTH family proteins in different GBM microarray datasets from the Oncomine database, and identified YTHDF1 as the most highly overexpressed member of this family in GBM. By performing the knockdown of YTHDF1 in a GBM cell line, we found that it positively regulates proliferation, chemoresistance and cancer stem cell-like properties. Musashi-1 (MSI1) is a postranscriptional gene expression regulator associated with high oncogenicity in GBM. By knocking down and overexpressing MSI1, we found that it positively regulates YTHDF1 expression. The inhibitory effects imposed on the processes of proliferation and migration by YTHDF1 knockdown were shown to be partially rescued by concomitant overexpression of MSI1. MSI1 and YTHDF1 were shown to be positively correlated in clinical glioma samples, and their concomitant upregulation was associated with decreased survival of glioma patients. We identified the direct regulation of YTHDF1 by MSI1. CONCLUSIONS: Given the fact that both proteins are master regulators of gene expression, and both of them are unfavorable factors in GBM, we suggest that in any future studies aimed to uncover the prognostic value and therapy potential, these two proteins should be considered together.

14.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114016

RESUMO

Spheroidal cancer cell cultures have been used to enrich cancer stem cells (CSC), which are thought to contribute to important clinical features of tumors. This study aimed to map the regulatory networks driven by circular RNAs (circRNAs) in CSC-enriched colorectal cancer (CRC) spheroid cells. The spheroid cells established from two CRC cell lines acquired stemness properties in pluripotency gene expression and multi-lineage differentiation capacity. Genome-wide sequencing identified 1503 and 636 circRNAs specific to the CRC parental and spheroid cells, respectively. In the CRC spheroids, algorithmic analyses unveiled a core network of mRNAs involved in modulating stemness-associated signaling pathways, driven by a circRNA-microRNA (miRNA)-mRNA axis. The two major circRNAs, hsa_circ_0066631 and hsa_circ_0082096, in this network were significantly up-regulated in expression levels in the spheroid cells. The two circRNAs were predicted to target and were experimentally shown to down-regulate miR-140-3p, miR-224, miR-382, miR-548c-3p and miR-579, confirming circRNA sponging of the targeted miRNAs. Furthermore, the affected miRNAs were demonstrated to inhibit degradation of six mRNA targets, viz. ACVR1C/ALK7, FZD3, IL6ST/GP130, SKIL/SNON, SMAD2 and WNT5, in the CRC spheroid cells. These mRNAs encode proteins that are reported to variously regulate the GP130/Stat, Activin/Nodal, TGF-ß/SMAD or Wnt/ß-catenin signaling pathways in controlling various aspects of CSC stemness. Using the CRC spheroid cell model, the novel circRNA-miRNA-mRNA axis mapped in this work forms the foundation for the elucidation of the molecular mechanisms of the complex cellular and biochemical processes that determine CSC stemness properties of cancer cells, and possibly for designing therapeutic strategies for CRC treatment by targeting CSC.


Assuntos
Neoplasias Colorretais/genética , MicroRNAs/genética , RNA Circular/genética , RNA Mensageiro/genética , Esferoides Celulares/patologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral/química , Neoplasias Colorretais/patologia , Biologia Computacional/métodos , Redes Reguladoras de Genes , Humanos , Células-Tronco Neoplásicas/química , Células-Tronco Neoplásicas/patologia , Análise de Sequência de RNA , Esferoides Celulares/química , Esferoides Celulares/citologia , Sequenciamento do Exoma
15.
Cancers (Basel) ; 12(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629833

RESUMO

Lung cancer (LC) causes the majority of cancer-related deaths. Circular RNAs (circRNAs) were reported to play roles in cancers by targeting pro- and anti-oncogenic miRNAs. However, the mechanisms of circRNAs in LC progression and their prognostic value of treatment response remain unclear. By using next generation sequencing (NGS) of LC cell lines' transcriptomes, we identified highly overexpressed hsa_circ_0000190 and hsa_circ_000164 as potential biomarkers. By using the highly sensitive RT-ddPCR method, these circRNAs were shown to be secreted by cell lines and were detected in human blood. Clinical validation by RT-ddPCR was carried out on 272 (231 LC patients and 41 controls) blood samples. Higher hsa_circ_0000190 levels were associated with larger tumor size (p < 0.0001), worse histological type of adenocarcinoma (p = 0.0028), later stage (p < 0.0001), more distant metastatic organs (p = 0.0039), extrathoracic metastasis (p = 0.0004), and poor survival (p = 0.047) and prognosis. Using liquid biopsy-based RT-ddPCR, we discovered the correlation between increased hsa_circ_0000190 plasma level (p < 0.0001) and higher programmed death-ligand 1 (PD-L1) level in tumor (p = 0.0283). Notably, long-term follow-up of the immunotherapy treated cases showed that upregulated plasma hsa_circ_0000190 level correlated with poor response to systemic therapy and immunotherapy (p = 0.0002, 0.0058, respectively). Secretory circRNAs are detectable in blood by LB-based RT-ddPCR and may serve as blood-based biomarkers to monitor disease progression and treatment efficacy.

16.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316695

RESUMO

Ovarian clear cell carcinoma (OCCC) is the second most common epithelial ovarian carcinoma (EOC). It is refractory to chemotherapy with a worse prognosis after the preliminary optimal debulking operation, such that the treatment of OCCC remains a challenge. OCCC is believed to evolve from endometriosis, a chronic immune/inflammation-related disease, so that immunotherapy may be a potential alternative treatment. Here, gene set-based analysis was used to investigate the immunofunctionomes of OCCC in early and advanced stages. Quantified biological functions defined by 5917 Gene Ontology (GO) terms downloaded from the Gene Expression Omnibus (GEO) database were used. DNA microarray gene expression profiles were used to convert 85 OCCCs and 136 normal controls into to the functionome. Relevant offspring were as extracted and the immunofunctionomes were rebuilt at different stages by machine learning. Several dysregulated pathogenic functions were found to coexist in the immunopathogenesis of early and advanced OCCC, wherein the complement-activation-alternative-pathway may be the headmost dysfunctional immunological pathway in duality for carcinogenesis at all OCCC stages. Several immunological genes involved in the complement system had dual influences on patients' survival, and immunohistochemistrical analysis implied the higher expression of C3a receptor (C3aR) and C5a receptor (C5aR) levels in OCCC than in controls.


Assuntos
Adenocarcinoma de Células Claras/genética , Complemento C3a/genética , Perfilação da Expressão Gênica/métodos , Neoplasias Ovarianas/genética , Receptores de Complemento/genética , Adenocarcinoma de Células Claras/imunologia , Adenocarcinoma de Células Claras/mortalidade , Estudos de Casos e Controles , Complemento C3a/metabolismo , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Aprendizado de Máquina , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/mortalidade , Receptores de Complemento/metabolismo , Análise de Sobrevida
17.
J Chin Med Assoc ; 83(1): 15-17, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31809303

RESUMO

The liver is an essential organ that is primarily responsible for digestion and eliminating toxic substances from the body. After the industrial revolution, Western diet and lifestyle changes have increased the incidence of several liver diseases, including non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), liver cirrhosis, and hepatocellular carcinoma (HCC). NAFLD and NASH are mostly asymptomatic at early stages, and the disease progression from NAFLD to life-threatening HCC remains not fully understood. Circular RNA (circRNA) is consist of a circular structure, and the circRNA-microRNA(miRNA)-mRNA axes have been shown to be involved in several cellular events, including apoptosis, vascularization, metastasis, etc. The highly stable structure of circRNAs has enabled themselves to be used as putative biomarkers of several diseases. Here, we conducted a literature review and discussed the identified roles of circRNAs in NAFLD, NASH, liver cirrhosis, and HCC. For example, deficiency of circRNA_0046366 and circRNA_0046367 has been shown as the characteristics of NAFLD, and restoration of these circRNAs ameliorates the oxidative stress, lipotoxicity, and disease severity in NAFLD. Silencing of circ_0071410 was shown to alleviate hepatic stellate activation, the key step of liver cirrhosis. CDR1 and circ_0067934 can facilitate the invasion and metastasis of HCC, while circMTO1 negatively regulates the progression of HCC. Although several research works have been conducted, the whole picture of circRNA-related underlying mechanisms is unclear. Future works using high-throughput bioinformatic approaches will be needed to delineate the role of circRNAs in liver diseases and to further develop novel diagnostics and therapeutics.


Assuntos
Hepatopatias/etiologia , RNA Circular/fisiologia , Biomarcadores , Carcinoma Hepatocelular/etiologia , Humanos , Cirrose Hepática/etiologia , Neoplasias Hepáticas/etiologia , Hepatopatia Gordurosa não Alcoólica/etiologia
18.
J Chin Med Assoc ; 83(2): 113-116, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31834023

RESUMO

The treatment of metastatic head and neck squamous cell carcinoma (HNSCC) with a combination of radiotherapy (RT) and immunotherapy can augment treatment response and symptomatic relief. Combination therapy can also trigger a non-targeted tumor control event called the abscopal effect. This effect can be demonstrated by treatment with anti-programmed death 1/programmed death ligand 1 (PD-L1) and anti-cytotoxic T-lymphocyte-associated antigen 4 antibodies in combination with hypofractionated RT. Individual studies and clinical trials have revealed that combination radio-immunotherapy improves overall treatment response by successful initiation of the abscopal effect, which extends the treatment effects to non-targeted lesions. Growing attention to the abscopal effect may inspire innovations in current RT toward more effective and less toxic radiobiological treatment modalities for advanced HNSCC. We review the latest findings on the abscopal effect with emphases on therapeutic modalities and potential applications for treating metastatic HNSCC.


Assuntos
Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Animais , Terapia Combinada , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Cuidados Paliativos , Hipofracionamento da Dose de Radiação , Carcinoma de Células Escamosas de Cabeça e Pescoço/epidemiologia
19.
ACS Appl Mater Interfaces ; 11(22): 19808-19818, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31066542

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent and deadly malignancies characterized by high rate of recurrence. Tumor recurrence is often attributed to the presence of a subpopulation of cells with stem cell properties, referred to as cancer stem cells (CSCs). Traditionally, cancer therapies target the entire bulk of tumor cells; however, they are poorly effective against CSCs, characterized by higher drug resistance. Therefore, approaches targeting CSCs may be required in addition to conventional chemotherapy to prevent tumor recurrence. In this study, we investigated an approach to target HCC by combining the conventional chemotherapeutic drug, cisplatin, to target the bulk of tumor cells, and differentiation therapy by delivering the gene encoding HNF4α, an important regulator of hepatocyte differentiation, to target CSCs. We used the Huh7 cell line as an in vitro model of HCC, which is characterized by a high proportion of CD133-expressing CSCs. By using flow cytometry, we separated CD133+ and CD133- Huh7 cell subpopulations and have shown that the former has highly pronounced in vivo tumorigenic capacity in contrast to the latter, which could not generate tumors in vivo. For the dual delivery of HNF4α-encoding plasmid and cisplatin, we used polyethyleneimine-modified mesoporous silica nanoparticles (PMSNs) as the nanocarriers. Here, we show that the treatment of CD133-expressing Huh7 cells with HNF4α-loaded PMSNs can suppress their proliferation rate, decrease the proportion of CSCs, downregulate stemness-associated genes, and increase the expression of mature hepatocyte-associated genes. At the same time, the treatment of Huh7 with PMSNs loaded with both HNF4α-encoding plasmid and cisplatin could block them in the S-phase of the cell cycle and cause apoptosis. In addition, dually loaded PMSNs were the most efficient formulation in suppressing tumor growth in vivo. To summarize, in this study, we tested the nanoparticle-based delivery system as both chemotherapy and gene-based therapy agents, which has great potential for development of effective treatment of HCC.


Assuntos
Antígeno AC133/metabolismo , Carcinoma Hepatocelular/metabolismo , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Fator 4 Nuclear de Hepatócito/metabolismo , Nanopartículas/química , Dióxido de Silício/química , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Animais , Western Blotting , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citometria de Fluxo , Fator 4 Nuclear de Hepatócito/genética , Humanos , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos SCID , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Oncotarget ; 9(26): 18594-18606, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29719629

RESUMO

The prevalence of nonalcoholic fatty liver disease (NAFLD) is usually increased with age. Non-alcoholic steatohepatitis (NASH), a serious form of NAFLD, may lead to cirrhosis and end-stage liver diseases. Induced pluripotent stem cells (iPSCs) hold promising potential in personalized medicine. Although obviation of c-Myc reduces tumorigenic risk, it also largely reduced the generation of iPSCs. Recently, Poly(ADP-ribose) polymerase 1 (Parp1) has been reported to enhance cell reprogramming. In this study, we demonstrated that forced expression of Oct4/Sox2/Klf4/Parp1 (OSKP) effectively promoted iPSC generation from senescent somatic cells from 18-month-old mouse. The iPSCs presented regular pluripotent properties, ability to form smaller teratoma with smaller size, and the potential for tridermal differentiation including hepatocyte-like cells (OSKP-iPSC-Heps). Resembled to fetal hepatocytes but not senescent hepatocytes, these OSKP-iPSC-Heps possessed antioxidant ability and were resistant to oxidative insult induced by H2O2 or exogenous fatty acid. Intrasplenic transplantation of OSKP-iPSC-Heps ameliorated the triglyceride over-accumulation and hepatitis, prevented the production of inflammatory cytokines and oxidative substances, and reduced apoptotic cells in methionine/choline-deficient diet (MCDD)-fed mice. In conclusion, we demonstrated that Parp-1 promoted iPSC generation from senescent cells, which can be used for the treatment of NASH after hepatic-specific differentiation. These findings indicated that patient-derived iPSC-Heps may offer an alternative option for treatment of NASH and NASH-associated end-stage liver diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA