Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959677

RESUMO

Diabetes is a chronic metabolic disease characterized by improperly regulating proteins, carbohydrates, and lipids due to insulin deficiency or resistance. The increasing prevalence of diabetes poses a tremendous socioeconomic burden worldwide, resulting in the rise of many studies on Chinese herbal medicines to discover the most effective cure for diabetes. Sesame seeds are among these Chinese herbal medicines that were found to contain various pharmacological activities, including antioxidant and anti-inflammatory properties, lowering cholesterol, improving liver function, blood pressure and sugar lowering, regulating lipid synthesis, and anticancer activities. These medicinal benefits are attributed to sesamin, which is the main lignan found in sesame seeds and oil. In this study, Wistar rat models were induced with type 2 diabetes using streptozotocin (STZ) and nicotinamide, and the effect of sesamin on the changes in body weight, blood sugar level, glycosylated hemoglobin (HbA1c), insulin levels, and the states of the pancreas and liver of the rats were evaluated. The results indicate a reduced blood glucose level, HbA1c, TG, and ALT and AST enzymes after sesamin treatment, while increased insulin level, SOD, CAT, and GPx activities were also observed. These findings prove sesamin's efficacy in ameliorating the symptoms of diabetes through its potent pharmacological activities.


Assuntos
Diabetes Mellitus Tipo 2 , Lignanas , Ratos , Animais , Ratos Wistar , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hemoglobinas Glicadas , Lignanas/farmacologia , Lignanas/uso terapêutico , Dioxóis/farmacologia , Dioxóis/uso terapêutico , Insulina , Extratos Vegetais
2.
Plants (Basel) ; 12(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37687413

RESUMO

Osmanthus fragrans (Thunb.) Lour. flowers (OF-F) have been traditionally consumed as a functional food and utilized as folk medicine. This study evaluated the antioxidant, anti-inflammatory and cytotoxic effects of OF-F extracts on prostate cancer cells (DU-145) and determined possible protein-ligand interactions of its compounds in silico. The crude OF-F extracts-water (W) and ethanol (E) were tested for phytochemical screening, antioxidant, anti-inflammatory, and anti-cancer. Network and molecular docking analyses of chemical markers were executed to establish their application for anticancer drug development. OF-F-E possessed higher total polyphenols (233.360 ± 3.613 g/kg) and tannin (93.350 ± 1.003 g/kg) contents than OF-F-W. In addition, OF-F-E extract demonstrated effective DPPH scavenging activity (IC50 = 0.173 ± 0.004 kg/L) and contained a high FRAP value (830.620 ± 6.843 g Trolox/kg). In cell culture experiments, OF-F-E significantly reduced NO levels and inhibited cell proliferation of RAW-264.7 and DU-145 cell lines, respectively. Network analysis revealed O. fragrans (Thunb.) Lour. metabolites could affect thirteen molecular functions and thirteen biological processes in four cellular components. These metabolites inhibited key proteins of DU-145 prostate cancer using molecular docking with rutin owning the highest binding affinity with PIKR31 and AR. Hence, this study offered a new rationale for O. fragrans (Thunb.) Lour. metabolites as a medicinal herb for anticancer drug development.

3.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37762232

RESUMO

Parkinson's disease (PD) is one of the large-scale health issues detrimental to human quality of life, and current treatments are only focused on neuroprotection and easing symptoms. This study evaluated in silico binding activity and estimated the stability of major metabolites in the roots of R. palmatum (RP) with main protein targets in Parkinson's disease and their ADMET properties. The major metabolites of RP were subjected to molecular docking and QSAR with α-synuclein, monoamine oxidase isoform B, catechol o-methyltransferase, and A2A adenosine receptor. From this, emodin had the greatest binding activity with Parkinson's disease targets. The chemical stability of the selected compounds was estimated using density functional theory analyses. The docked compounds showed good stability for inhibitory action compared to dopamine and levodopa. According to their structure-activity relationship, aloe-emodin, chrysophanol, emodin, and rhein exhibited good inhibitory activity to specific targets. Finally, mediocre pharmacokinetic properties were observed due to unexceptional blood-brain barrier penetration and safety profile. It was revealed that the major metabolites of RP may have good neuroprotective activity as an additional hit for PD drug development. Also, an association between redox-mediating and activities with PD-relevant protein targets was observed, potentially opening discussion on electrochemical mechanisms with biological functions.


Assuntos
Emodina , Fármacos Neuroprotetores , Doença de Parkinson , Rheum , Humanos , Doença de Parkinson/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Emodina/farmacologia , Simulação de Acoplamento Molecular , Qualidade de Vida , Monoaminoxidase
4.
Plants (Basel) ; 12(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37631218

RESUMO

Perilla frutescens (L.) Britt. is extensively cultivated in East Asia as a dietary vegetable, and nutraceuticals are reportedly rich in bioactive compounds, especially with anticancer activities. This study explored the in vitro cytotoxic effects of P. frutescens parts' (stems, leaves, and seeds) extracts on prostate cancer cells (DU-145) and possible interactions of putative metabolites to related prostate cancer targets in silico. The ethanol extract of P. frutescens leaves was the most cytotoxic for the prostate cancer cells. From high-performance liquid chromatography analysis, rosmarinic acid was identified as the major metabolite in the leaf extracts. Network analysis revealed interactions from multiple affected targets and pathways of the metabolites. From gene ontology enrichment analysis, P. frutescens leaf metabolites could significantly affect 14 molecular functions and 12 biological processes in five cellular components. Four (4) KEGG pathways, including for prostate cancer, and six (6) Reactome pathways were shown to be significantly affected. The molecular simulation confirmed the interactions of relevant protein targets with key metabolites, including rosmarinic acid. This study could potentially lead to further exploration of P. frutescens leaves or their metabolites for prostate cancer treatment and prevention.

5.
J Taiwan Inst Chem Eng ; 147: 104898, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37193294

RESUMO

Background: Jing Guan Fang (JGF) is an anti-COVID-19 Chinese Medicine decoction comprised of five medicinal herbs to possess anti-inflammatory and antiviral properties for treatment. This study aims to electrochemically decipher the anti-coronavirus activity of JGF and show that microbial fuel cells may serve as a platform for screening efficacious herbal medicines and providing scientific bases for the mechanism of action (MOA) of TCMs. Methods: Electrochemical techniques (e.g., cyclic voltammetry) and MFCs were adopted as the bioenergy-based platforms to assess the bioenergy-stimulating characteristics of JGF. Phytochemical analysis correlated polyphenolic and flavonoid content with antioxidant activity and bioenergy-stimulating properties. Network pharmacology on the active compounds was employed to identify anti-inflammatory and anti-COVID-19 protein targets, and molecular docking validated in silico results. Significant findings: This first-attempt results show that JGF possesses significant reversible bioenergy-stimulation (amplification 2.02 ± 0.04) properties suggesting that its antiviral efficacy is both bioenergy-steered and electron mediated. Major flavonoids and flavone glycosides identified by HPLC (e.g., baicalein and baicalin, respectively) possess electron-shuttling (ES) characteristics that allow herbal medicines to treat COVID-19 via (1) reversible scavenging of ROS to lessen inflammation; (2) inhibition of viral proteins; and (3) targeting of immunomodulatory pathways to stimulate the immune response according to network pharmacology.

6.
J Taiwan Inst Chem Eng ; 145: 104838, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37051508

RESUMO

Background: Traditional herbal medicines usually contain electron shuttle (ES)-like structures compounds which are potential candidates for antiviral compounds selection. Houttuynia cordata is applied as a biomaterial to decipher its potential applications in bioenergy extraction in microbial fuel cells (MFCs) and anti-COVID-19 via molecular docking evaluation. Methods: H. cordata leaves extracts by water and 60% ethanol solvent were analyzed for total polyphenols, antioxidant activity, cyclic voltammetry (CV), and MFCs. The bioactive compounds of H. cordata leaves extracts were assayed via LC/MS analysis. Identification of the marker substances for potential antiviral activity using a molecular docking model was provided. Significant findings: 60% ethanol extract exhibits the highest total polyphenols and antioxidant activity compared with water extracts. Bioenergy extraction in MFCs showed that 60% ethanol extracts could give 1.76-fold more power generation compared to the blank. Flavonoids and their sugar-to-glycan ratios increased after CV scanning and they are expected to be effective ES substances. Quercitrin, from the H. cordata extract that shares an ES-like structure, was found to exhibit strong binding affinities towards ACE2 and RdRp. This indicated the potential of H. cordata leaves as a promising antiviral herb.

7.
Polymers (Basel) ; 14(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015625

RESUMO

Polypropylene (PP), a promising engineering thermoplastic, possesses the advantages of light weight, chemical resistance, and flexible processability, yet preserving insulative properties. For the rising demand for cost-effective electronic devices and system hardware protections, these applications require the proper conductive properties of PP, which can be easily modified. This study investigates the thermal and electrical properties of isotactic polypropylene/copper nanowires (i-PP/CuNWs). The CuNWs were harvested by chemical reduction of CuCl2 using a reducing agent of glucose, capping agent of hexadecylamine (HDA), and surfactant of PEG-7 glyceryl cocoate. Their morphology, light absorbance, and solution homogeneity were investigated by SEM, UV-visible spectrophotometry, and optical microscopy. The averaged diameters and the length of the CuNWs were 66.4 ± 16.1 nm and 32.4 ± 11.8 µm, respectively. The estimated aspect ratio (L/D, length-to-diameter) was 488 ± 215 which can be recognized as 1-D nanomaterials. Conductive i-PP/CuNWs composites were prepared by solution blending using p-xylene, then melt blending. The thermal analysis and morphology of CuNWs were characterized by DSC, polarized optical microscopy (POM), and SEM, respectively. The melting temperature decreased, but the crystallization temperature increasing of i-PP/CuNWs composites were observed when increasing the content of CuNWs by the melt blending process. The WAXD data reveal the coexistence of Cu2O and Cu in melt-blended i-PP/CuNWs composites. The fit of the electrical volume resistivity (ρ) with the modified power law equation: ρ = ρo (V - Vc)-t based on the percolation theory was used to find the percolation concentration. A low percolation threshold value of 0.237 vol% and high critical exponent t of 2.96 for i-PP/CuNWs composites were obtained. The volume resistivity for i-PP/CuNWs composite was 1.57 × 107 Ω-cm at 1 vol% of CuNWs as a potential candidate for future conductive materials.

8.
J Taiwan Inst Chem Eng ; 135: 104365, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35578714

RESUMO

Background: Traditional Chinese medicine (TCM) has been used as an "immune booster" for disease prevention and clinical treatment since ancient China. However, many studies were focused on the organic herbal extract rather than aqueous herbal extract (AHE; decoction). Due to the COVID-19 pandemics, this study tended to decipher phytochemical contents in the decoction of herbs and derived bioactivities (e.g., anti-oxidant and anti-inflammatory properties). As prior works revealed, the efficacy of Parkinson's medicines and antiviral flavonoid herbs was strongly governed by their bioenergy-stimulating proficiency. Methods: Herbal extracts were prepared by using a traditional Chinese decoction pot. After filtration and evaporation, crude extracts were used to prepare sample solutions for various bioassays. The phytochemical content and bioactivities of AHEs were determined via ELISA microplate reader. Microbial fuel cells (MFCs) were used as a novel platform to evaluate bioenergy contents with electron-transfer characteristics for antiviral drug development. Significant findings: Regarding 18 TCM herbal extracts for the prevention of SARS and H1N1 influenza, comparison on total polyphenol, flavonoid, condensed tannins and polysaccharides were conducted. Moreover, considerable total flavonoid contents were detected for 11 herb extracts. These AEHs were not only rich in phytonutrient contents but also plentiful in anti-oxidant and anti-inflammatory activities. Herbs with high polyphenol content had higher antioxidant activity. Forsythia suspensa extract expressed the highest inhibition against nitric oxide production for anti-inflammation. MFC bioenergy-stimulating studies also revealed that top ranking COVID-19 efficacious herbs were both bioenergy driven and electron mediated. That is, electron transfer-controlled bioenergy extraction was significant to antiviral characteristics for anti-COVID-19 drug development.

9.
Molecules ; 24(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817084

RESUMO

The use of foodstuff as natural medicines has already been established through studies demonstrating the pharmacological activities that they exhibit. Knowing the nutritional and pharmacological significance of foods enables the understanding of their role against several diseases. Among the foods that can potentially be considered as medicine, is sesame or Sesamum indicum L., which is part of the Pedaliaceae family and is composed of its lignans such as sesamin, sesamol, sesaminol and sesamolin. Its lignans have been widely studied and are known to possess antiaging, anticancer, antidiabetes, anti-inflammatory and antioxidant properties. Modern chronic diseases, which can transform into clinical diseases, are potential targets of these lignans. The prime example of chronic diseases is rheumatic inflammatory diseases, which affect the support structures and the organs of the body and can also develop into malignancies. In line with this, studies emphasizing the anti-inflammatory and anticancer activities of sesame have been discussed in this review.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Compostos Fitoquímicos/farmacologia , Sesamum/química , Animais , Anti-Inflamatórios/química , Antineoplásicos/química , Modelos Animais de Doenças , Humanos , Lignanas/farmacologia , Compostos Fitoquímicos/química
10.
Polymers (Basel) ; 11(7)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288474

RESUMO

With the advent of exploration in finding new sources for treating different diseases, one possible natural source is from marine algae. Having an array of potential benefits, researchers are interested in the components which comprise one of these activities. This can lead to the isolation of active compounds with biological activities, such as antioxidation of free radicals, anti-inflammation, antiproliferation of cancer cells, and anticoagulant to name a few. One of the compounds that are isolated from marine algae are sulfated polysaccharides (SPs). SPs are complex heterogenous natural polymers with an abundance found in different species of marine algae. Marine algae are known to be one of the most important sources of SPs, and depending on the species, its chemical structure varies. This variety has important physical and chemical components and functions which has gained the attention of researchers as this contributes to the many facets of its pharmacologic activity. In this review, recent pharmacologic application potentials and updates on the use of SPs from marine algae are discussed.

11.
Molecules ; 23(3)2018 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-29510478

RESUMO

Polygonum multiflorum Thunb. is a traditional herbal medicine that is rich in polyphenols. The major compound, 2,3,5,4'-tetrahydroxystilbene-2-O-ß-d-glucoside (THSG) has many pharmacological activities, such as antioxidative and free radical-scavenging properties, and the abilities to reduce hyperlipidemia, prevent lipid peroxidation, and protect the cardiovascular system. In this study, the anti-osteoarthritis (OA) effects of THSG were explored using in vitro and in vivo models. THSG inhibited nitric oxide (NO) and prostaglandin E2 (PGE2) production and inducible NO synthase (iNOS) and cyclooxygenase-2 expressions by lipopolysaccharide-stimulated RAW 264.7 cells. On the other hand, THSG inhibited PGE2 production and iNOS and matrix metalloproteinase-13 expressions by interleukin-1ß-stimulated primary rat chondrocytes. Through a mono-iodoacetate-induced rat OA model assay, THSG reduced paw edema and improved the weight-bearing distribution. Therefore, THSG has anti-inflammatory activity and could be applied as a lead compound for the development as an OA drug.


Assuntos
Anti-Inflamatórios/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Edema/tratamento farmacológico , Glucosídeos/farmacologia , Osteoartrite/tratamento farmacológico , Polygonum/química , Estilbenos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Condrócitos/efeitos dos fármacos , Condrócitos/imunologia , Condrócitos/patologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/isolamento & purificação , Dinoprostona/antagonistas & inibidores , Dinoprostona/biossíntese , Edema/induzido quimicamente , Edema/enzimologia , Edema/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucosídeos/isolamento & purificação , Membro Posterior , Ácido Iodoacético , Lipopolissacarídeos/farmacologia , Masculino , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Osteoartrite/induzido quimicamente , Osteoartrite/enzimologia , Osteoartrite/patologia , Cultura Primária de Células , Células RAW 264.7 , Ratos , Estilbenos/isolamento & purificação
12.
Bioresour Technol ; 256: 95-101, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29433051

RESUMO

This first-attempt study used extracts of appropriate antioxidant abundant Camellia and non-Camellia tea and medicinal herbs as model ESs to stably intensify bioelectricity generation performance in microbial fuel cells (MFCs). As electron shuttles (ESs) could stimulate electron transport phenomena by significant reduction of electron transfer resistance, the efficiency of power generation for energy extraction in microbial fuel cells (MFCs) could be appreciably augmented. Using environmentally friendly natural bioresource as green bioresource of ESs is the most promising to sustainable practicability. As comparison of power-density profiles indicated, supplement of Camellia tea extracts would be the most appropriate, then followed non-Camellia Chrysanthemum tea and medicinal herbs. Antioxidant activities, total phenolic contents and power stimulating activities were all electrochemically associated. In particular, the extract of unfermented Camellia tea (i.e., green tea) was the most promising ESs to augment bioenergy extraction compared to other refreshing medicinal herb extracts.


Assuntos
Fontes de Energia Bioelétrica , Plantas Medicinais , Chá , Antioxidantes , Camellia sinensis , Fenóis , Extratos Vegetais
13.
Planta Med ; 83(1-02): 151-157, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27352383

RESUMO

Eight ethanolic extracts of indigenous Taiwanese plants of the genus Alpinia were tested for tumor cytotoxicity against AGS, Hep G2, HeLa, KB, and HL-60 cells. Among the 50 % and 95 % EtOH extracts of eight Alpinia species, the cytotoxic effects of Alpinia intermedia leaves were the strongest. When the leaf extract of A. intermedia was partitioned using n-hexane and aqueous solvents, the n-hexane layer showed a greater cytotoxic effect and could prolong the survival time of P-388D1 tumor-bearing CDF1 mice. Two new labdane diterpene derivatives, intermedin A (1) and intermedin B (2), and coronarin E (3) were isolated from the n-hexane layer of A. intermedia. Intermedin A induced apoptosis in HL-60 cells at 30 µg/mL and significantly prolonged the survival time of P-388D1 tumor-bearing CDF1 mice by 48.7 % at 20 mg/kg of body weight. We suggest that intermedin A is a major compound of A. intermedia and has a cytotoxic effect on HL-60 and P-388D1 cells.


Assuntos
Alpinia/química , Antineoplásicos Fitogênicos/farmacologia , Diterpenos/farmacologia , Lignanas/farmacologia , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Diterpenos/química , Diterpenos/isolamento & purificação , Etanol , Humanos , Lignanas/química , Lignanas/isolamento & purificação , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/mortalidade , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia
14.
Drug Des Devel Ther ; 10: 949-57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27041997

RESUMO

Dang-Gui-Bu-Xue-Tang (DBT), a combination of Angelicae Sinensis Radix and Astragali Radix, is a widely used herbal decoction in traditional Chinese medicine primarily to promote or invigorate the "blood". In this study, we explored this ancient formulation and provide evidence of its blood-toning properties. We used the improvement iron uptake as promote or invigorate the "blood" indicator. Ferritin formation of Caco-2 cells in vitro assay and diet-induced anemia (DIA) in rat model were used to prove its improvement iron uptake and ameliorating effects. Finally, the iron-DBT interactions were measured by iron-binding assay. We first demonstrated DBT increased uptake of ferrous iron through the biosynthesis of ferritin by Caco-2 cells and determined which complementary treatment would provide optimum results. Thereafter, effects of the treatment on improving the bioavailability of absorbed iron in the form of hemoglobin (Hb) were established using a DIA-animal model. The results showed that DBT slightly improved Hb levels compared with the baseline Hb and pretreatment with DBT for 2 hours prior to supplementation with ferrous sulfate provided the greatest gain in Hb levels in DIA rats. However, DBT and ferrous sulfate were co-treated with Caco-2 cell or DIA rats, the ferritin formation and Hb levels both were decreased. In iron-binding assay, the DBT extract influenced the free Fe(II) type in the FeSO4 solution. Therefore, we suggest that complementary treatment with DBT and iron supplementation can have a strong ameliorating effect on iron-deficiency anemia in clinical settings, but needs a 2-hour interval of DBT administration prior to ferrous sulfate treatment.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Anemia Ferropriva/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Ferro/metabolismo , Animais , Células CACO-2 , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/química , Hemoglobinas/química , Hemoglobinas/metabolismo , Humanos , Masculino , Medicina Tradicional Chinesa , Ratos , Ratos Sprague-Dawley
15.
J Agric Food Chem ; 64(11): 2254-62, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26919689

RESUMO

The rhizomes of many Atractylodes species, including Atractylodes chinensis Koidzumi, Atractylodes macrocephala Koidzumi, and Atractylodes japonica Koidzumi, are collectively termed Atractylodis Rhizoma. We prepared n-hexane extracts of the three species and evaluated their anti-inflammatory effects on lipopolysaccharide (LPS)-induced RAW 264.7 cells. Among all n-hexane extracts, those of A. japonica most strongly inhibited nitric oxide (NO) production in LPS-induced RAW 264.7 cells; five sesquiterpenes, atractylon, atractylenolide I, atractylenolide II, atractylenolide III, and 8-epiasterolid, were isolated from A. japonica. The phytochemical content of A. japonica was similar to those of A. chinensis and A. macrocephala. Moreover, the atractylon concentration was higher in A. japonica than in A. chinensis and A. macrocephala. Atractylon significantly inhibited NO and prostaglandin E2 production as well as inducible NO synthase and cyclooxygenase-2 expression in LPS-induced RAW 264.7 cells. Atractylon (40 mg/kg) also significantly reduced the acetic-acid-induced writhing response, carrageenan-induced paw edema, and hot-plate latent pain response in mice. According to the results, A. japonica has anti-inflammatory and antinociceptive effects and atractylon is the major active component of A. japonica. Therefore, atractylon can be used as a bioactivity marker in A. japonica.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Atractylodes/química , Extratos Vegetais/farmacologia , Rizoma/química , Analgésicos/isolamento & purificação , Animais , Anti-Inflamatórios/isolamento & purificação , Carragenina , Edema/induzido quimicamente , Edema/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Extratos Vegetais/química , Células RAW 264.7 , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Especificidade da Espécie
16.
Sci Rep ; 5: 18152, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26658304

RESUMO

Water is a ubiquitous solvent in biological, physical, and chemical processes. Unique properties of water result from water's tetrahedral hydrogen-bonded (HB) network (THBN). The original THBN is destroyed when water is confined in a nanosized environment or localized at interfaces, resulting in corresponding changes in HB-dependent properties. In this work, we present an innovative idea to validate the reserve energy of high-energy water and applications of high-energy water to promote water's fundamental activities of solubility, ionic conductivity, and extraction at room temperature. High-energy water with reduced HBs was created by utilizing hot electrons with energies from the decay of surface plasmon excited at gold (Au) nanoparticles (NPs). Compared to conventional deionized (DI) water, solubilities of alkali metal-chloride salts in high-energy water were significantly increased, especially for salts that release heat when dissolved. The ionic conductivity of NaCl in high-energy water was also markedly higher, especially when the electrolyte's concentration was extremely low. In addition, antioxidative components, such as polyphenols and 2,3,5,4'-tetrahydroxystilbene-2-O-beta-d-glucoside (THSG) from teas, and Polygonum multiflorum (PM), could more effectively be extracted using high-energy water. These results demonstrate that high-energy water has emerged as a promising innovative solvent for promoting water's fundamental activities via effective energy transfer.

17.
Oncotarget ; 5(24): 12891-907, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25436977

RESUMO

We have used a perfusion bellows cell culture system to investigate resveratrolinduced anti-proliferation/apoptosis in a human estrogen receptor (ER)-negative breast cancer cell line (MDA-MB-231). Using an injection system to perfuse media with stilbene, we showed resveratrol (0.5 - 100 µM) to decrease cell proliferation in a concentration-dependent manner. Comparison of influx and medium efflux resveratrol concentrations revealed rapid disappearance of the stilbene, consistent with cell uptake and metabolism of the agent reported by others. Exposure of cells to 10 µM resveratrol for 4 h daily × 6 d inhibited cell proliferation by more than 60%. Variable extracellular acid-alkaline conditions (pH 6.8 - 8.6) affected basal cell proliferation rate, but did not alter anti-proliferation induced by resveratrol. Resveratrol-induced gene expression, including transcription of the most up-regulated genes and pro-apoptotic p53-dependent genes, was not affected by culture pH changes. The microarray findings in the context of induction of anti-proliferation with brief daily exposure of cells to resveratrol-and rapid disappearance of the compound in the perfusion system-are consistent with existence of an accessible initiation site for resveratrol actions on tumor cells, e.g., the cell surface receptor for resveratrol described on integrin αvß3.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Estilbenos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Integrina alfaVbeta3/metabolismo , Resveratrol , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA