Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Immunol ; 213(4): 419-434, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38949522

RESUMO

The Krebs cycle enzyme aconitate decarboxylase 1 (ACOD1) mediates itaconate synthesis in monocytes and macrophages. Previously, we reported that administration of 4-octyl itaconate to lupus-prone mice abrogated immune dysregulation and clinical features. In this study, we explore the role of the endogenous ACOD1/itaconate pathway in the development of TLR7-induced lupus (imiquimod [IMQ] model). We found that, in vitro, ACOD1 was induced in mouse bone marrow-derived macrophages and human monocyte-derived macrophages following TLR7 stimulation. This induction was partially dependent on type I IFN receptor signaling and on specific intracellular pathways. In the IMQ-induced mouse model of lupus, ACOD1 knockout (Acod1-/-) displayed disruptions of the splenic architecture, increased serum levels of anti-dsDNA and proinflammatory cytokines, and enhanced kidney immune complex deposition and proteinuria, when compared with the IMQ-treated wild-type mice. Consistent with these results, Acod1-/- bone marrow-derived macrophages treated in vitro with IMQ showed higher proinflammatory features. Furthermore, itaconate serum levels in systemic lupus erythematosus patients were decreased compared with healthy individuals, in association with disease activity and specific perturbed cardiometabolic parameters. These findings suggest that the ACOD1/itaconate pathway plays important immunomodulatory and vasculoprotective roles in systemic lupus erythematosus, supporting the potential therapeutic role of itaconate analogs in autoimmune diseases.


Assuntos
Carboxiliases , Lúpus Eritematoso Sistêmico , Macrófagos , Camundongos Knockout , Succinatos , Animais , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Humanos , Feminino , Macrófagos/imunologia , Succinatos/farmacologia , Doenças Cardiovasculares/imunologia , Biomarcadores , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Adulto , Masculino , Modelos Animais de Doenças , Pessoa de Meia-Idade , Citocinas/metabolismo , Receptor 7 Toll-Like/metabolismo , Hidroliases
2.
Ann Rheum Dis ; 83(6): 787-798, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38408849

RESUMO

OBJECTIVES: To study the molecular pathogenesis of PAPA (pyogenic arthritis, pyoderma gangrenosum and acne) syndrome, a debilitating hereditary autoinflammatory disease caused by dominant mutation in PSTPIP1. METHODS: Gene knock-out and knock-in mice were generated to develop an animal model. THP1 and retrovirally transduced U937 human myeloid leukaemia cell lines, peripheral blood mononuclear cells, small interfering RNA (siRNA) knock-down, site-directed mutagenesis, cytokine immunoassays, coimmunoprecipitation and immunoblotting were used to study inflammasome activation. Cytokine levels in the skin were evaluated by immunohistochemistry. Responsiveness to Janus kinase (JAK) inhibitors was evaluated ex vivo with peripheral blood mononuclear cells and in vivo in five treatment-refractory PAPA patients. RESULTS: The knock-in mouse model of PAPA did not recapitulate the human disease. In a human myeloid cell line model, PAPA-associated PSTPIP1 mutations activated the pyrin inflammasome, but not the NLRP3, NLRC4 or AIM2 inflammasomes. Pyrin inflammasome activation was independent of the canonical pathway of pyrin serine dephosphorylation and was blocked by the p.W232A PSTPIP1 mutation, which disrupts pyrin-PSTPIP1 interaction. IFN-γ priming of monocytes from PAPA patients led to IL-18 release in a pyrin-dependent manner. IFN-γ was abundant in the inflamed dermis of PAPA patients, but not patients with idiopathic pyoderma gangrenosum. Ex vivo JAK inhibitor treatment attenuated IFN-γ-mediated pyrin induction and IL-18 release. In 5/5 PAPA patients, the addition of JAK inhibitor therapy to IL-1 inhibition was associated with clinical improvement. CONCLUSION: PAPA-associated PSTPIP1 mutations trigger a pyrin-IL-18-IFN-γ positive feedback loop that drives PAPA disease activity and is a target for JAK inhibition.


Assuntos
Acne Vulgar , Artrite Infecciosa , Modelos Animais de Doenças , Inflamassomos , Interferon gama , Pioderma Gangrenoso , Pioderma Gangrenoso/genética , Humanos , Animais , Camundongos , Acne Vulgar/imunologia , Inflamassomos/metabolismo , Inflamassomos/imunologia , Interferon gama/metabolismo , Inibidores de Janus Quinases/uso terapêutico , Inibidores de Janus Quinases/farmacologia , Camundongos Knockout , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Retroalimentação Fisiológica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Pirina/genética , Mutação , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Técnicas de Introdução de Genes , Interleucina-18/metabolismo , Células THP-1
3.
Proc Natl Acad Sci U S A ; 120(40): e2306761120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37756335

RESUMO

Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) require signal transducer and activator of transcription 4 (STAT4) to elicit rapid effector responses and protect against pathogens. By combining genetic and transcriptomic approaches, we uncovered divergent roles for STAT4 in regulating effector differentiation of these functionally related cell types. Stat4 deletion in Ncr1-expressing cells led to impaired NK cell terminal differentiation as well as to an unexpected increased generation of cytotoxic ILC1 during intestinal inflammation. Mechanistically, Stat4-deficient ILC1 exhibited upregulation of gene modules regulated by STAT5 in vivo and an aberrant effector differentiation upon in vitro stimulation with IL-2, used as a prototypical STAT5 activator. Moreover, STAT4 expression in NCR+ innate lymphocytes restrained gut inflammation in the dextran sulfate sodium-induced colitis model limiting pathogenic production of IL-13 from adaptive CD4+ T cells in the large intestine. Collectively, our data shed light on shared and distinctive mechanisms of STAT4-regulated transcriptional control in NK cells and ILC1 required for intestinal inflammatory responses.


Assuntos
Antineoplásicos , Fator de Transcrição STAT5 , Humanos , Imunidade Inata , Diferenciação Celular , Células Matadoras Naturais , Inflamação , Fator de Transcrição STAT4/genética
4.
Sci Immunol ; 7(74): eabl3795, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35984892

RESUMO

A diet rich in saturated fat and carbohydrates causes low-grade chronic inflammation in several organs, including the liver, ultimately driving nonalcoholic steatohepatitis. In this setting, environment-driven lipotoxicity and glucotoxicity induce liver damage, which promotes dendritic cell activation and generates a major histocompatibility complex class II (MHC-II) immunopeptidome enriched with peptides derived from proteins involved in cellular metabolism, oxidative phosphorylation, and the stress responses. Here, we demonstrated that lipotoxicity and glucotoxicity, as driven by a high-fat and high-fructose (HFHF) diet, promoted MHC-II presentation of nested T and B cell epitopes from protein disulfide isomerase family A member 3 (PDIA3), which is involved in immunogenic cell death. Increased MHC-II presentation of PDIA3 peptides was associated with antigen-specific proliferation of hepatic CD4+ immune infiltrates and isotype switch of anti-PDIA3 antibodies from IgM to IgG3, indicative of cellular and humoral PDIA3 autoreactivity. Passive transfer of PDIA3-specific T cells or PDIA3-specific antibodies also exacerbated hepatocyte death, as determined by increased hepatic transaminases detected in the sera of mice subjected to an HFHF but not control diet. Increased humoral responses to PDIA3 were also observed in patients with chronic inflammatory liver conditions, including autoimmune hepatitis, primary biliary cholangitis, and type 2 diabetes. Together, our data indicated that metabolic insults caused by an HFHF diet elicited liver damage and promoted pathogenic immune autoreactivity driven by T and B cell PDIA3 epitopes.


Assuntos
Autoimunidade , Diabetes Mellitus Tipo 2 , Fígado , Isomerases de Dissulfetos de Proteínas , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Epitopos , Antígenos de Histocompatibilidade Classe II , Fígado/patologia , Camundongos , Peptídeos , Isomerases de Dissulfetos de Proteínas/imunologia , Isomerases de Dissulfetos de Proteínas/metabolismo
5.
Ann Rheum Dis ; 81(10): 1453-1464, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35868845

RESUMO

OBJECTIVES: To test the hypothesis that ROSAH (retinal dystrophy, optic nerve oedema, splenomegaly, anhidrosis and headache) syndrome, caused by dominant mutation in ALPK1, is an autoinflammatory disease. METHODS: This cohort study systematically evaluated 27 patients with ROSAH syndrome for inflammatory features and investigated the effect of ALPK1 mutations on immune signalling. Clinical, immunologic and radiographical examinations were performed, and 10 patients were empirically initiated on anticytokine therapy and monitored. Exome sequencing was used to identify a new pathogenic variant. Cytokine profiling, transcriptomics, immunoblotting and knock-in mice were used to assess the impact of ALPK1 mutations on protein function and immune signalling. RESULTS: The majority of the cohort carried the p.Thr237Met mutation but we also identified a new ROSAH-associated mutation, p.Tyr254Cys.Nearly all patients exhibited at least one feature consistent with inflammation including recurrent fever, headaches with meningeal enhancement and premature basal ganglia/brainstem mineralisation on MRI, deforming arthritis and AA amyloidosis. However, there was significant phenotypic variation, even within families and some adults lacked functional visual deficits. While anti-TNF and anti-IL-1 therapies suppressed systemic inflammation and improved quality of life, anti-IL-6 (tocilizumab) was the only anticytokine therapy that improved intraocular inflammation (two of two patients).Patients' primary samples and in vitro assays with mutated ALPK1 constructs showed immune activation with increased NF-κB signalling, STAT1 phosphorylation and interferon gene expression signature. Knock-in mice with the Alpk1 T237M mutation exhibited subclinical inflammation.Clinical features not conventionally attributed to inflammation were also common in the cohort and included short dental roots, enamel defects and decreased salivary flow. CONCLUSION: ROSAH syndrome is an autoinflammatory disease caused by gain-of-function mutations in ALPK1 and some features of disease are amenable to immunomodulatory therapy.


Assuntos
Doenças Hereditárias Autoinflamatórias , NF-kappa B , Proteínas Quinases/genética , Amiloidose , Animais , Estudos de Coortes , Mutação com Ganho de Função , Doenças Hereditárias Autoinflamatórias/genética , Humanos , Inflamação/genética , Camundongos , Mutação , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Quinases/metabolismo , Qualidade de Vida , Proteína Amiloide A Sérica , Síndrome , Inibidores do Fator de Necrose Tumoral
6.
Nat Commun ; 12(1): 4447, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290243

RESUMO

Tryptophan catabolism is a major metabolic pathway utilized by several professional and non-professional antigen presenting cells to maintain immunological tolerance. Here we report that 3-hydroxy-L-kynurenamine (3-HKA) is a biogenic amine produced via an alternative pathway of tryptophan metabolism. In vitro, 3-HKA has an anti-inflammatory profile by inhibiting the IFN-γ mediated STAT1/NF-κΒ pathway in both mouse and human dendritic cells (DCs) with a consequent decrease in the release of pro-inflammatory chemokines and cytokines, most notably TNF, IL-6, and IL12p70. 3-HKA has protective effects in an experimental mouse model of psoriasis by decreasing skin thickness, erythema, scaling and fissuring, reducing TNF, IL-1ß, IFN-γ, and IL-17 production, and inhibiting generation of effector CD8+ T cells. Similarly, in a mouse model of nephrotoxic nephritis, besides reducing inflammatory cytokines, 3-HKA improves proteinuria and serum urea nitrogen, overall ameliorating immune-mediated glomerulonephritis and renal dysfunction. Overall, we propose that this biogenic amine is a crucial component of tryptophan-mediated immune tolerance.


Assuntos
Aminas Biogênicas/farmacologia , Imunomodulação/efeitos dos fármacos , Cinurenina/análogos & derivados , Animais , Aminas Biogênicas/metabolismo , Aminas Biogênicas/uso terapêutico , Linhagem Celular Tumoral , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Células Endoteliais , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Inflamação , Interferon gama/farmacologia , Cinurenina/metabolismo , Cinurenina/farmacologia , Cinurenina/uso terapêutico , Camundongos , NF-kappa B/metabolismo , Nefrite/tratamento farmacológico , Nefrite/imunologia , Psoríase/tratamento farmacológico , Psoríase/imunologia , Triptofano/metabolismo
7.
Ann Rheum Dis ; 77(4): 612-619, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29358286

RESUMO

OBJECTIVES: To characterise the clinical features, immune manifestations and molecular mechanisms in a recently described autoinflammatory disease caused by mutations in TRNT1, a tRNA processing enzyme, and to explore the use of cytokine inhibitors in suppressing the inflammatory phenotype. METHODS: We studied nine patients with biallelic mutations in TRNT1 and the syndrome of congenital sideroblastic anaemia with immunodeficiency, fevers and developmental delay (SIFD). Genetic studies included whole exome sequencing (WES) and candidate gene screening. Patients' primary cells were used for deep RNA and tRNA sequencing, cytokine profiling, immunophenotyping, immunoblotting and electron microscopy (EM). RESULTS: We identified eight mutations in these nine patients, three of which have not been previously associated with SIFD. Three patients died in early childhood. Inflammatory cytokines, mainly interleukin (IL)-6, interferon gamma (IFN-γ) and IFN-induced cytokines were elevated in the serum, whereas tumour necrosis factor (TNF) and IL-1ß were present in tissue biopsies of patients with active inflammatory disease. Deep tRNA sequencing of patients' fibroblasts showed significant deficiency of mature cytosolic tRNAs. EM of bone marrow and skin biopsy samples revealed striking abnormalities across all cell types and a mix of necrotic and normal-appearing cells. By immunoprecipitation, we found evidence for dysregulation in protein clearance pathways. In 4/4 patients, treatment with a TNF inhibitor suppressed inflammation, reduced the need for blood transfusions and improved growth. CONCLUSIONS: Mutations of TRNT1 lead to a severe and often fatal syndrome, linking protein homeostasis and autoinflammation. Molecular diagnosis in early life will be crucial for initiating anti-TNF therapy, which might prevent some of the severe disease consequences.


Assuntos
Anemia Sideroblástica/genética , Anti-Inflamatórios/uso terapêutico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Síndromes de Imunodeficiência/genética , Mutação , Nucleotidiltransferases/genética , RNA de Transferência/genética , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adulto , Anemia Sideroblástica/sangue , Criança , Pré-Escolar , Citocinas/sangue , Citocinas/genética , Deficiências do Desenvolvimento/genética , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/sangue , Humanos , Imunofenotipagem , Masculino , Linhagem , Fenótipo , Fator de Necrose Tumoral alfa/análise , Sequenciamento do Exoma
8.
Arthritis Rheumatol ; 69(6): 1325-1336, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28118536

RESUMO

OBJECTIVE: To evaluate proinflammatory cytokines and leukocyte subpopulations in the cerebrospinal fluid (CSF) and blood of patients with neonatal-onset multisystem inflammatory disease (NOMID) after treatment, and to compare inflammatory cytokines in the CSF and blood in 6 patients treated with 2 interleukin-1 (IL-1) blockers-anakinra and canakinumab. METHODS: During routine follow-up visits between December 2011 and October 2013, we immunophenotyped the CSF of 17 pediatric NOMID patients who were treated with anakinra, and analyzed CSF cytokine levels in samples obtained at baseline and at 3-5-year follow-up visits and compared them to samples from healthy controls. RESULTS: CSF levels of IL-6, interferon-γ-inducible 10-kd protein (IP-10/CXCL10), and IL-18 and monocyte and granulocyte counts significantly decreased with anakinra treatment but did not normalize to levels in the controls, even in patients fulfilling criteria for clinical remission. CSF IL-6 and IL-18 levels significantly correlated with measures of blood-brain barrier function, specifically CSF protein (r = 0.75 and r = 0.81, respectively) and albumin quotient (r = 0.79 and r = 0.68, respectively). When patients were treated with canakinumab versus anakinra, median CSF white blood cell counts and IL-6 levels were significantly higher with canakinumab treatment (10.2 cells/mm3 versus 3.7 cells/mm3 and 150.7 pg/ml versus 28.5 pg/ml, respectively) despite similar serum cytokine levels. CONCLUSION: CSF leukocyte subpopulations and cytokine levels significantly improve with optimized IL-1 blocking treatment, but do not normalize. The correlation of CSF IL-6, IP-10/CXCL10, and IL-18 levels with clinical laboratory measures of inflammation and blood-brain barrier function suggests that they may have a role as biomarkers in central nervous system (CNS) inflammation. The difference in inhibition of CSF biomarkers between 2 IL-1 blocking agents, anakinra and canakinumab, suggests differences in efficacy in the intrathecal compartment, with anakinra being more effective. Our data indicate that intrathecal immune responses shape CNS inflammation and should be assessed in addition to blood markers.


Assuntos
Barreira Hematoencefálica/metabolismo , Síndromes Periódicas Associadas à Criopirina/líquido cefalorraquidiano , Citocinas/metabolismo , Meningite Asséptica/líquido cefalorraquidiano , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Antirreumáticos/uso terapêutico , Biomarcadores/líquido cefalorraquidiano , Pré-Escolar , Síndromes Periódicas Associadas à Criopirina/tratamento farmacológico , Citocinas/líquido cefalorraquidiano , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Masculino , Meningite Asséptica/tratamento farmacológico , Resultado do Tratamento
9.
Sci Rep ; 6: 35218, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731420

RESUMO

Age-related accumulation of ploidy changes is associated with decreased expression of genes controlling chromosome segregation and cohesin functions. To determine the consequences of whole chromosome instability (W-CIN) we down-regulated the spindle assembly checkpoint component BUB1 and the mitotic cohesin SMC1A, and used four-color-interphase-FISH coupled with BrdU incorporation and analyses of senescence features to reveal the fate of W-CIN cells. We observed significant correlations between levels of not-diploid cells and senescence-associated features (SAFs). W-CIN induced DNA double strand breaks and elevated oxidative stress, but caused low apoptosis. SAFs of W-CIN cells were remarkably similar to those induced by replicative senescence but occurred in only 13 days versus 4 months. Cultures enriched with not-diploid cells acquired a senescence-associated secretory phenotype (SASP) characterized by IL1B, CXCL8, CCL2, TNF, CCL27 and other pro-inflammatory factors including a novel SASP component CLEC11A. These findings suggest that W-CIN triggers premature senescence, presumably to prevent the propagation of cells with an abnormal DNA content. Cells deviating from diploidy have the ability to communicate with their microenvironment by secretion of an array of signaling factors. Our results suggest that aneuploid cells that accumulate during aging in some mammalian tissues potentially contribute to age-related pathologies and inflammation through SASP secretion.


Assuntos
Senescência Celular/genética , Instabilidade Cromossômica , Apoptose , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Células Cultivadas , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Técnicas de Silenciamento de Genes , Humanos , Hibridização in Situ Fluorescente , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
10.
Proc Natl Acad Sci U S A ; 113(6): 1612-7, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26802121

RESUMO

Receptor-induced NF-κB activation is controlled by NEMO, the NF-κB essential modulator. Hypomorphic NEMO mutations result in X-linked ectodermal dysplasia with anhidrosis and immunodeficiency, also referred to as NEMO syndrome. Here we describe a distinct group of patients with NEMO C-terminal deletion (ΔCT-NEMO) mutations. Individuals harboring these mutations develop inflammatory skin and intestinal disease in addition to ectodermal dysplasia with anhidrosis and immunodeficiency. Both primary cells from these patients, as well as reconstituted cell lines with this deletion, exhibited increased IκB kinase (IKK) activity and production of proinflammatory cytokines. Unlike previously described loss-of-function mutations, ΔCT-NEMO mutants promoted increased NF-κB activation in response to TNF and Toll-like receptor stimulation. Investigation of the underlying mechanisms revealed impaired interactions with A20, a negative regulator of NF-κB activation, leading to prolonged accumulation of K63-ubiquitinated RIP within the TNFR1 signaling complex. Recruitment of A20 to the C-terminal domain of NEMO represents a novel mechanism limiting NF-κB activation by NEMO, and its absence results in autoinflammatory disease.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Quinase I-kappa B/química , Quinase I-kappa B/metabolismo , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Núcleo Celular/metabolismo , Citocinas/biossíntese , Enzima Desubiquitinante CYLD , Feminino , Regulação da Expressão Gênica , Humanos , Quinase I-kappa B/genética , Imunidade Inata , Inflamação/imunologia , Inflamação/patologia , Masculino , Monócitos/metabolismo , Proteínas Mutantes/metabolismo , Mutação/genética , Linhagem , Fenótipo , Poliubiquitina/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Receptores do Fator de Necrose Tumoral/metabolismo , Linfócitos T/metabolismo , Receptores Toll-Like/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinação
11.
Nat Genet ; 48(1): 67-73, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26642243

RESUMO

Systemic autoinflammatory diseases are driven by abnormal activation of innate immunity. Herein we describe a new disease caused by high-penetrance heterozygous germline mutations in TNFAIP3, which encodes the NF-κB regulatory protein A20, in six unrelated families with early-onset systemic inflammation. The disorder resembles Behçet's disease, which is typically considered a polygenic disorder with onset in early adulthood. A20 is a potent inhibitor of the NF-κB signaling pathway. Mutant, truncated A20 proteins are likely to act through haploinsufficiency because they do not exert a dominant-negative effect in overexpression experiments. Patient-derived cells show increased degradation of IκBα and nuclear translocation of the NF-κB p65 subunit together with increased expression of NF-κB-mediated proinflammatory cytokines. A20 restricts NF-κB signals via its deubiquitinase activity. In cells expressing mutant A20 protein, there is defective removal of Lys63-linked ubiquitin from TRAF6, NEMO and RIP1 after stimulation with tumor necrosis factor (TNF). NF-κB-dependent proinflammatory cytokines are potential therapeutic targets for the patients with this disease.


Assuntos
Proteínas de Ligação a DNA/genética , Haploinsuficiência/genética , Doenças Hereditárias Autoinflamatórias/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Proteínas Nucleares/genética , Idade de Início , Proteínas de Ligação a DNA/metabolismo , Feminino , Doenças Hereditárias Autoinflamatórias/metabolismo , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Inibidor de NF-kappaB alfa , NF-kappa B/genética , NF-kappa B/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/metabolismo , Linhagem , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa
12.
Protein Expr Purif ; 85(2): 187-99, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22910563

RESUMO

Titin is a large elastic protein found in muscle that maintains the elasticity and structural integrity of the sarcomere. The PEVK region of titin is intrinsically disordered, highly elastic and serves as a hub to bind signaling proteins. Systematic investigation of the structure and affinity profile of the PEVK region will provide important information about the functions of titin. Since PEVK is highly heterogeneous due to extensive differential splicing from more than one hundred exons, we engineered and expressed polyproteins that consist of a defined number of identical single exon modules. These customized polyproteins reduce heterogeneity, amplify interactions of less dominant modules, and most importantly, provide tags for atomic force microscopy and allow more readily interpretable data from single-molecule techniques. Expression and purification of recombinant polyprotein with repeat regions presented many technical challenges: recombination events in tandem repeats of identical DNA sequences exacerbated by high GC content, toxicity of polymer plasmid and expressed protein to the bacteria; early truncation of proteins expressed with different numbers of modules; and extreme sensitivity to proteolysis. We have investigated a number of in vitro and in vivo bacterial and yeast expression systems, as well as baculoviral systems as potential solutions to these problems. We successfully expressed and purified in gram quantities a polyprotein derived from human titin exon 172 using Pichia pastoris yeast. This study provides valuable insights into the technical challenges regarding the engineering and purification of a tandem repeat sequence of an intrinsically disordered biopolymer.


Assuntos
Proteínas Musculares/genética , Poliproteínas/genética , Proteínas Quinases/genética , Proteínas Recombinantes/genética , Baculoviridae/genética , Western Blotting , Conectina , Escherichia coli/genética , Glucose/metabolismo , Humanos , Modelos Moleculares , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Pichia/genética , Plasmídeos , Poliproteínas/química , Poliproteínas/metabolismo , Engenharia de Proteínas , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Sequências de Repetição em Tandem , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA