Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 82(20): 3815-3829, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35972384

RESUMO

DNA repair pathway inhibitors are a new class of anticancer drugs that are advancing in clinical trials. Peposertib is an inhibitor of DNA-dependent protein kinase (DNA-PK), which is a key driver of nonhomologous end-joining (NHEJ). To identify regulators of response to peposertib, we performed a genome-wide CRISPR knockout screen and found that loss of POLQ (polymerase theta, POLθ) and other genes in the microhomology-mediated end-joining (MMEJ) pathway are key predictors of sensitivity to DNA-PK inhibition. Simultaneous disruption of two DNA repair pathways via combined treatment with peposertib plus a POLθ inhibitor novobiocin exhibited synergistic synthetic lethality resulting from accumulation of toxic levels of DNA double-strand break end resection. TP53-mutant tumor cells were resistant to peposertib but maintained elevated expression of POLQ and increased sensitivity to novobiocin. Consequently, the combination of peposertib plus novobiocin resulted in synthetic lethality in TP53-deficient tumor cell lines, organoid cultures, and patient-derived xenograft models. Thus, the combination of a targeted DNA-PK/NHEJ inhibitor with a targeted POLθ/MMEJ inhibitor may provide a rational treatment strategy for TP53-mutant solid tumors. SIGNIFICANCE: Combined inhibition of NHEJ and MMEJ using two nontoxic, targeted DNA repair inhibitors can effectively induce toxic DNA damage to treat TP53-deficient cancers.


Assuntos
Neoplasias , Mutações Sintéticas Letais , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Novobiocina , Piridazinas , Quinazolinas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Mol Cell Biol ; 37(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27920254

RESUMO

Stress granules (SGs) are large macromolecular aggregates that contain translation initiation complexes and mRNAs. Stress granule formation coincides with translational repression, and stress granules actively signal to mediate cell fate decisions by signaling to the translation apparatus to (i) maintain translational repression, (ii) mount various transcriptional responses, including innate immunity, and (iii) repress apoptosis. Previous work showed that G3BP1 is phosphorylated at serine 149, which regulates G3BP1 oligomerization, stress granule assembly, and RNase activity intrinsic to G3BP1. However, the kinase that phosphorylates G3BP1 was not identified, leaving a key step in stress granule regulation uncharacterized. Here, using chemical inhibition, genetic depletion, and overexpression experiments, we show that casein kinase 2 (CK2) promotes stress granule dynamics. These results link CK2 activity with SG disassembly. We also show that casein kinase 2 phosphorylates G3BP1 at serine 149 in vitro and in cells. These data support a role for casein kinase 2 in regulation of protein synthesis by downregulating stress granule formation through G3BP1.


Assuntos
Proteínas de Transporte/metabolismo , Caseína Quinase II/metabolismo , Grânulos Citoplasmáticos/metabolismo , Estresse Fisiológico , Arsenitos/toxicidade , Caseína Quinase II/antagonistas & inibidores , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/efeitos dos fármacos , DNA Helicases , Genes Dominantes , Humanos , Fosforilação/efeitos dos fármacos , Proteínas de Ligação a Poli-ADP-Ribose , Inibidores de Proteínas Quinases/farmacologia , Subunidades Proteicas/metabolismo , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Estresse Fisiológico/efeitos dos fármacos
3.
J Biol Chem ; 291(43): 22671-22685, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27601476

RESUMO

Stress granules (SGs) are cytoplasmic condensates of stalled messenger ribonucleoprotein complexes (mRNPs) that form when eukaryotic cells encounter environmental stress. RNA-binding proteins are enriched for arginine methylation and facilitate SG assembly through interactions involving regions of low amino acid complexity. How methylation of specific RNA-binding proteins regulates RNA granule assembly has not been characterized. Here, we examined the potent SG-nucleating protein Ras-GAP SH3-binding protein 1 (G3BP1), and found that G3BP1 is differentially methylated on specific arginine residues by protein arginine methyltransferase (PRMT) 1 and PRMT5 in its RGG domain. Several genetic and biochemical interventions that increased methylation repressed SG assembly, whereas interventions that decreased methylation promoted SG assembly. Arsenite stress quickly and reversibly decreased asymmetric arginine methylation on G3BP1. These data indicate that arginine methylation in the RGG domain prevents large SG assembly and rapid demethylation is a novel signal that regulates SG formation.


Assuntos
Arsenitos/farmacologia , Proteínas de Transporte/metabolismo , Grânulos Citoplasmáticos/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Arginina/genética , Arginina/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/genética , DNA Helicases , Humanos , Metilação , Proteínas de Ligação a Poli-ADP-Ribose , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
4.
J Clin Invest ; 122(8): 2884-97, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22820290

RESUMO

MicroRNA-122 (miR-122), which accounts for 70% of the liver's total miRNAs, plays a pivotal role in the liver. However, its intrinsic physiological roles remain largely undetermined. We demonstrated that mice lacking the gene encoding miR-122a (Mir122a) are viable but develop temporally controlled steatohepatitis, fibrosis, and hepatocellular carcinoma (HCC). These mice exhibited a striking disparity in HCC incidence based on sex, with a male-to-female ratio of 3.9:1, which recapitulates the disease incidence in humans. Impaired expression of microsomal triglyceride transfer protein (MTTP) contributed to steatosis, which was reversed by in vivo restoration of Mttp expression. We found that hepatic fibrosis onset can be partially attributed to the action of a miR-122a target, the Klf6 transcript. In addition, Mir122a(-/-) livers exhibited disruptions in a range of pathways, many of which closely resemble the disruptions found in human HCC. Importantly, the reexpression of miR-122a reduced disease manifestation and tumor incidence in Mir122a(-/-) mice. This study demonstrates that mice with a targeted deletion of the Mir122a gene possess several key phenotypes of human liver diseases, which provides a rationale for the development of a unique therapy for the treatment of chronic liver disease and HCC.


Assuntos
Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Fígado/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Sequência de Bases , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , Perfilação da Expressão Gênica , Genes Supressores de Tumor , Homeostase , Humanos , Metabolismo dos Lipídeos/genética , Lipoproteínas VLDL/metabolismo , Cirrose Hepática Experimental/etiologia , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/metabolismo , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas Experimentais/etiologia , Masculino , Camundongos , Camundongos Knockout , Caracteres Sexuais
5.
Hepatology ; 49(5): 1571-82, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19296470

RESUMO

UNLABELLED: MicroRNAs (miRNAs), which are inhibitors of gene expression, participate in diverse biological functions and in carcinogenesis. In this study, we show that liver-specific microRNA-122 (miR-122) is significantly down-regulated in liver cancers with intrahepatic metastasis and negatively regulates tumorigenesis. Restoration of miR-122 in metastatic Mahlavu and SK-HEP-1 cells significantly reduced in vitro migration, invasion, and anchorage-independent growth as well as in vivo tumorigenesis, angiogenesis, and intrahepatic metastasis in an orthotopic liver cancer model. Because an inverse expression pattern is often present between an miRNA and its target genes, we used a computational approach and identified multiple miR-122 candidate target genes from two independent expression microarray datasets. Thirty-two target genes were empirically verified, and this group of genes was enriched with genes regulating cell movement, cell morphology, cell-cell signaling, and transcription. We further showed that one of the miR-122 targets, ADAM17 (a disintegrin and metalloprotease 17) is involved in metastasis. Silencing of ADAM17 resulted in a dramatic reduction of in vitro migration, invasion, in vivo tumorigenesis, angiogenesis, and local invasion in the livers of nude mice, which is similar to that which occurs with the restoration of miR-122. CONCLUSION: Our study suggests that miR-122, a tumor suppressor microRNA affecting hepatocellular carcinoma intrahepatic metastasis by angiogenesis suppression, exerts some of its action via regulation of ADAM17. Restoration of miR-122 has a far-reaching effect on the cell. Using the concomitant down-regulation of its targets, including ADAM17, a rational therapeutic strategy based on miR-122 may prove to be beneficial for patients with hepatocellular carcinoma.


Assuntos
Proteínas ADAM/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Proteína ADAM17 , Animais , Antagomirs , Carcinoma Hepatocelular/patologia , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Fígado/patologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA