Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(10): 107626, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731616

RESUMO

Massive expansion of immature and suppressive myeloid cells is a common feature of malignant solid tumors. Over-expression of cyclin-dependent kinase 20, also known as cell cycle-related kinase (CCRK), in hepatocellular carcinoma (HCC) correlates with reduced patient survival and low immunotherapy responsiveness. Beyond tumor-intrinsic oncogenicity, here we demonstrated that CCRK is upregulated in myeloid cells in tumor-bearing mice and in patients with HCC. Intratumoral injection of Ccrk-knockdown myeloid-derived suppressor cells (MDSCs) increased tumor-infiltrating CD8+T cells and suppressed HCC tumorigenicity. Using an indel mutant transgenic model, we showed that Ccrk inactivation in myeloid cells conferred a mature phenotype with elevated IL-12 production, driving Th1 responses and CD8+T cell cytotoxicity to reduce orthotopic tumor growth and prolong survival. Mechanistically, CCRK activates STAT3/E4BP4 signaling in MDSCs to acquire immunosuppressive activity through transcriptional IL-10 induction and IL-12 suppression. Taken together, our findings unravel mechanistic insights into MDSC-mediated immunosuppression and offer a therapeutic kinase-target for cancer immunotherapy.

2.
Cell Mol Immunol ; 18(4): 1005-1015, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32879468

RESUMO

The liver is an immunologically tolerant organ and a common metastatic site of multiple cancer types. Although a role for cancer cell invasion programs has been well characterized, whether and how liver-intrinsic factors drive metastatic spread is incompletely understood. Here, we show that aberrantly activated hepatocyte-intrinsic cell cycle-related kinase (CCRK) signaling in chronic liver diseases is critical for cancer metastasis by reprogramming an immunosuppressive microenvironment. Using an inducible liver-specific transgenic model, we found that CCRK overexpression dramatically increased both B16F10 melanoma and MC38 colorectal cancer (CRC) metastasis to the liver, which was highly infiltrated by polymorphonuclear-myeloid-derived suppressor cells (PMN-MDSCs) and lacking natural killer T (NKT) cells. Depletion of PMN-MDSCs in CCRK transgenic mice restored NKT cell levels and their interferon gamma production and reduced liver metastasis to 2.7% and 0.7% (metastatic tumor weights) in the melanoma and CRC models, respectively. Mechanistically, CCRK activated nuclear factor-kappa B (NF-κB) signaling to increase the PMN-MDSC-trafficking chemokine C-X-C motif ligand 1 (CXCL1), which was positively correlated with liver-infiltrating PMN-MDSC levels in CCRK transgenic mice. Accordingly, CRC liver metastasis patients exhibited hyperactivation of hepatic CCRK/NF-κB/CXCL1 signaling, which was associated with accumulation of PMN-MDSCs and paucity of NKT cells compared to healthy liver transplantation donors. In summary, this study demonstrates that immunosuppressive reprogramming by hepatic CCRK signaling undermines antimetastatic immunosurveillance. Our findings offer new mechanistic insights and therapeutic targets for liver metastasis intervention.


Assuntos
Ciclo Celular , Neoplasias Colorretais/imunologia , Neoplasias Hepáticas/imunologia , Melanoma Experimental/imunologia , Células Supressoras Mieloides/imunologia , Células T Matadoras Naturais/imunologia , Microambiente Tumoral , Animais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
3.
Nat Commun ; 9(1): 5214, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30523261

RESUMO

Obesity increases the risk of hepatocellular carcinoma (HCC) especially in men, but the molecular mechanism remains obscure. Here, we show that an androgen receptor (AR)-driven oncogene, cell cycle-related kinase (CCRK), collaborates with obesity-induced pro-inflammatory signaling to promote non-alcoholic steatohepatitis (NASH)-related hepatocarcinogenesis. Lentivirus-mediated Ccrk ablation in liver of male mice fed with high-fat high-carbohydrate diet abrogates not only obesity-associated lipid accumulation, glucose intolerance and insulin resistance, but also HCC development. Mechanistically, CCRK fuels a feedforward loop by inducing STAT3-AR promoter co-occupancy and transcriptional up-regulation, which in turn activates mTORC1/4E-BP1/S6K/SREBP1 cascades via GSK3ß phosphorylation. Moreover, hepatic CCRK induction in transgenic mice stimulates mTORC1-dependent G-csf expression to enhance polymorphonuclear myeloid-derived suppressor cell recruitment and tumorigenicity. Finally, the STAT3-AR-CCRK-mTORC1 pathway components are concordantly over-expressed in human NASH-associated HCCs. These findings unveil the dual roles of an inflammatory-CCRK circuitry in driving metabolic and immunosuppressive reprogramming through mTORC1 activation, thereby establishing a pro-tumorigenic microenvironment for HCC development.


Assuntos
Carcinoma Hepatocelular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Neoplasias Hepáticas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Obesidade/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/genética , Feminino , Células Hep G2 , Humanos , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Inflamação/genética , Inflamação/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Obesidade/genética , Obesidade/imunologia , Interferência de RNA , Terapêutica com RNAi , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
Genesis ; 56(11-12): e23261, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30375740

RESUMO

MAB21L2(R51C) is one of the five documented MAB21L2 mutations in human patients with bilateral eye malformations identified via whole exome sequencing. In addition to the eye abnormality, patients with MAB21L2 R51C/+ mutation also have skeletal dysplasia and intellectual disability. To evaluate the pathology of this mutant allele systematically in understanding the functional role of MAB21L2 in human development, we introduce the R51C mutation into the mouse genome by CRISPR/Cas9 system to generate a mouse model for detailed characterization. The Mab21l2 R51C/+ mice have eyeless phenotype and skeletal abnormalities. Micro-computed tomography (micro-CT) analysis showed the Mab21l2 R51C/+ mice have no eye balls but with two abnormal tissues underneath the brain. Histological analysis revealed that the early eye development in the mutant embryos is interrupted. In addition, Mab21l2 R51C/+ mice also have joint fusion phenotype; the humerus is fused with radius, whereas femur is fused with tibia. Limbs in the mutant animals are distinctly shorter than the wild type; and deltoid tuberosities in humeri are absent in these Mab21l2 R51C/+ mice. In summary, we showed that our Mab21l2 R51C/+ mutant mice have recapitulated the pathological features in eye and bone of human patients. Further analyses of the mutant phenotype with molecular markers will provide insight on how MAB21L2 guides the optic differentiation and skeletogenesis, revealing specific underlying pathogenic mechanism of the MAB21L2(R51C) mutation.


Assuntos
Anormalidades do Olho/genética , Proteínas do Olho/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Anormalidades Musculoesqueléticas/genética , Fenótipo , Animais , Modelos Animais de Doenças , Camundongos , Mutação de Sentido Incorreto , Síndrome
5.
Gut ; 67(5): 931-944, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28939663

RESUMO

OBJECTIVE: Myeloid-derived suppressor cells (MDSCs) contribute to tumour immunosuppressive microenvironment and immune-checkpoint blockade resistance. Emerging evidence highlights the pivotal functions of cyclin-dependent kinases (CDKs) in tumour immunity. Here we elucidated the role of tumour-intrinsic CDK20, or cell cycle-related kinase (CCRK) on immunosuppression in hepatocellular carcinoma (HCC). DESIGN: Immunosuppression of MDSCs derived from patients with HCC and relationship with CCRK were determined by flow cytometry, expression analyses and co-culture systems. Mechanistic studies were also conducted in liver-specific CCRK-inducible transgenic (TG) mice and Hepa1-6 orthotopic HCC models using CRISPR/Cas9-mediated Ccrk depletion and liver-targeted nanoparticles for interleukin (IL) 6 trapping. Tumorigenicity and immunophenotype were assessed on single or combined antiprogrammed death-1-ligand 1 (PD-L1) therapy. RESULTS: Tumour-infiltrating CD11b+CD33+HLA-DR- MDSCs from patients with HCC potently inhibited autologous CD8+T cell proliferation. Concordant overexpression of CCRK and MDSC markers (CD11b/CD33) positively correlated with poorer survival rates. Hepatocellular CCRK stimulated immunosuppressive CD11b+CD33+HLA-DR- MDSC expansion from human peripheral blood mononuclear cells through upregulating IL-6. Mechanistically, CCRK activated nuclear factor-κB (NF-κB) via enhancer of zeste homolog 2 (EZH2) and facilitated NF-κB-EZH2 co-binding to IL-6 promoter. Hepatic CCRK induction in TG mice activated the EZH2/NF-κB/IL-6 cascade, leading to accumulation of polymorphonuclear (PMN) MDSCs with potent T cell suppressive activity. In contrast, inhibiting tumorous Ccrk or hepatic IL-6 increased interferon γ+tumour necrosis factor-α+CD8+ T cell infiltration and impaired tumorigenicity, which was rescued by restoring PMN-MDSCs. Notably, tumorous Ccrk depletion upregulated PD-L1 expression and increased intratumorous CD8+ T cells, thus enhancing PD-L1 blockade efficacy to eradicate HCC. CONCLUSION: Our results delineate an immunosuppressive mechanism of the hepatoma-intrinsic CCRK signalling and highlight an overexpressed kinase target whose inhibition might empower HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular/imunologia , Quinases Ciclina-Dependentes/metabolismo , Neoplasias Hepáticas/imunologia , Células Supressoras Mieloides/imunologia , Animais , Western Blotting , Carcinoma Hepatocelular/metabolismo , Técnicas de Cultura de Células , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Imunoprecipitação , Terapia de Imunossupressão , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Quinase Ativadora de Quinase Dependente de Ciclina
6.
Birth Defects Res C Embryo Today ; 102(1): 52-73, 2014 03.
Artigo em Inglês | MEDLINE | ID: mdl-24677723

RESUMO

The endochondral bones of the skeleton develop from a cartilage template and grow via a process involving a cascade of chondrocyte differentiation steps culminating in formation of a growth plate and the replacement of cartilage by bone. This process of endochondral ossification, driven by the generation of chondrocytes and their subsequent proliferation, differentiation, and production of extracellular matrix constitute a journey, deviation from which inevitably disrupts bone growth and development, and is the basis of human skeletal dysplasias with a wide range of phenotypic severity, from perinatal lethality to progressively deforming. This highly coordinated journey of chondrocyte specification and fate determination is controlled by a myriad of intrinsic and extrinsic factors. SOX9 is the master transcription factor that, in concert with varying partners along the way, directs the different phases of the journey from mesenchymal condensation, chondrogenesis, differentiation, proliferation, and maturation. Extracellular signals, including bone morphogenetic proteins, wingless-related MMTV integration site (WNT), fibroblast growth factor, Indian hedgehog, and parathyroid hormone-related peptide, are all indispensable for growth plate chondrocytes to align and organize into the appropriate columnar architecture and controls their maturation and transition to hypertrophy. Chondrocyte hypertrophy, marked by dramatic volume increase in phases, is controlled by transcription factors SOX9, Runt-related transcription factor, and FOXA2. Hypertrophic chondrocytes mediate the cartilage to bone transition and concomitantly face a live-or-die situation, a subject of much debate. We review recent insights into the coordination of the phases of the chondrocyte journey, and highlight the need for a systems level understanding of the regulatory networks that will facilitate the development of therapeutic approaches for skeletal dysplasia.


Assuntos
Desenvolvimento Ósseo/fisiologia , Doenças do Desenvolvimento Ósseo/fisiopatologia , Osso e Ossos/citologia , Condrócitos/citologia , Condrogênese/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA