Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176047

RESUMO

In the myocardium, the TPM1 gene expresses two isoforms of tropomyosin (Tpm), alpha (αTpm; Tpm 1.1) and kappa (κTpm; Tpm 1.2). κTpm is the result of alternative splicing of the TPM1 gene. We studied the structural features of κTpm and its regulatory function in the atrial and ventricular myocardium using an in vitro motility assay. We tested the possibility of Tpm heterodimer formation from α- and κ-chains. Our result shows that the formation of ακTpm heterodimer is thermodynamically favorable, and in the myocardium, κTpm most likely exists as ακTpm heterodimer. Using circular dichroism, we compared the thermal unfolding of ααTpm, ακTpm, and κκTpm. κκTpm had the lowest stability, while the ακTpm was more stable than ααTpm. The differential scanning calorimetry results indicated that the thermal stability of the N-terminal part of κκTpm is much lower than that of ααTpm. The affinity of ααTpm and κκTpm to F-actin did not differ, and ακTpm interacted with F-actin significantly worse. The troponin T1 fragment enhanced the κκTpm and ακTpm affinity to F-actin. κκTpm differently affected the calcium regulation of the interaction of pig and rat ventricular myosin with the thin filament. With rat myosin, calcium sensitivity of thin filaments containing κκTpm was significantly lower than that with ααTpm and with pig myosin, and the sensitivity did not differ. Thin filaments containing κκTpm and ακTpm were better activated by pig atrial myosin than those containing ααTpm.


Assuntos
Actinas , Cálcio , Animais , Ratos , Suínos , Actinas/química , Cálcio/análise , Tropomiosina/genética , Tropomiosina/química , Citoesqueleto de Actina/química , Miosinas/análise
2.
Biophys J ; 121(8): 1354-1366, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35318005

RESUMO

Electron microscopy (EM) shows that myosin heads in thick filaments isolated from striated muscles interact with each other and with the myosin tail under relaxing conditions. This "interacting-heads motif" (IHM) is highly conserved across the animal kingdom and is thought to be the basis of the super-relaxed state. However, a recent X-ray modeling study concludes, contrary to expectation, that the IHM is not present in relaxed intact muscle. We propose that this conclusion results from modeling with a thick filament 3D reconstruction in which the myosin heads have radially collapsed onto the thick filament backbone, not from absence of the IHM. Such radial collapse, by about 3-4 nm, is well established in EM studies of negatively stained myosin filaments, on which the reconstruction was based. We have tested this idea by carrying out similar X-ray modeling and determining the effect of the radial position of the heads on the goodness of fit to the X-ray pattern. We find that, when the IHM is modeled into a thick filament at a radius 3-4 nm greater than that modeled in the recent study, there is good agreement with the X-ray pattern. When the original (collapsed) radial position is used, the fit is poor, in agreement with that study. We show that modeling of the low-angle region of the X-ray pattern is relatively insensitive to the conformation of the myosin heads but very sensitive to their radial distance from the filament axis. We conclude that the IHM is sufficient to explain the X-ray diffraction pattern of intact muscle when placed at the appropriate radius.


Assuntos
Miosinas , Vertebrados , Citoesqueleto de Actina , Animais , Músculo Esquelético , Difração de Raios X
3.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218166

RESUMO

Tropomyosin (Tpm) is one of the major actin-binding proteins that play a crucial role in the regulation of muscle contraction. The flexibility of the Tpm molecule is believed to be vital for its functioning, although its role and significance are under discussion. We choose two sites of the Tpm molecule that presumably have high flexibility and stabilized them with the A134L or E218L substitutions. Applying differential scanning calorimetry (DSC), molecular dynamics (MD), co-sedimentation, trypsin digestion, and in vitro motility assay, we characterized the properties of Tpm molecules with these substitutions. The A134L mutation prevented proteolysis of Tpm molecule by trypsin, and both substitutions increased the thermal stability of Tpm and its bending stiffness estimated from MD simulation. None of these mutations affected the primary binding of Tpm to F-actin; still, both of them increased the thermal stability of the actin-Tpm complex and maximal sliding velocity of regulated thin filaments in vitro at a saturating Ca2+ concentration. However, the mutations differently affected the Ca2+ sensitivity of the sliding velocity and pulling force produced by myosin heads. The data suggest that both regions of instability are essential for correct regulation and fine-tuning of Ca2+-dependent interaction of myosin heads with F-actin.


Assuntos
Substituição de Aminoácidos , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Tropomiosina/genética , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Animais , Cálcio/química , Cálcio/metabolismo , Varredura Diferencial de Calorimetria , Humanos , Miosinas/química , Miosinas/metabolismo , Conformação Proteica , Estabilidade Proteica , Temperatura , Tropomiosina/química , Tropomiosina/metabolismo , Tripsina/metabolismo
4.
Int J Mol Sci ; 19(11)2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30373319

RESUMO

Tropomyosin (Tpm) is a coiled-coil actin-binding dimer protein that participates in the regulation of muscle contraction. Both Tpm chains contain Cys190 residues which are normally in the reduced state, but form an interchain disulfide bond in failing heart. Changes in structural and functional properties of Tpm and its complexes with actin upon disulfide cross-linking were studied using various experimental methods. To understand the molecular mechanism underlying these changes and to reveal the possible mechanism of the involvement of the cross-linking in heart failure, molecular dynamics (MD) simulations of the middle part of Tpm were performed in cross-linked and reduced states. The cross-linking increased bending stiffness of Tpm assessed from MD trajectories at 27 °C in agreement with previous experimental observations. However, at 40 °C, the cross-linking caused a decrease in Tpm stiffness and a significant reduction in the number of main chain hydrogen bonds in the vicinity of residues 133 and 134. These data are in line with observations showing enhanced thermal unfolding of the least stable part of Tpm at 30⁻40 °C and accelerated trypsin cleavage at residue 133 at 40 °C (but not at 27 °C) upon cross-linking. These results allow us to speculate about the possible mechanism of involvement of Tpm cross-linking to heart failure pathogenesis.


Assuntos
Dissulfetos/química , Simulação de Dinâmica Molecular , Tropomiosina/química , Cisteína/química
5.
J Muscle Res Cell Motil ; 38(2): 183-191, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28540577

RESUMO

Muscle contraction is powered by myosin interaction with actin-based thin filaments containing Ca2+-regulatory proteins, tropomyosin and troponin. Coiled-coil tropomyosin molecules form a long helical strand that winds around actin filament and either shields actin from myosin binding or opens it. Non-canonical residues G126 and D137 in the central part of tropomyosin destabilize its coiled-coil structure. Their substitutions for canonical ones, G126R and D137L, increase structural stability and the velocity of sliding of reconstructed thin filaments along myosin coated surface. The effect of these stabilizing mutations on force of the actin-myosin interaction is unknown. It also remains unclear whether the stabilization affects single actin-myosin interactions or it modifies the cooperativity of the binding of myosin molecules to actin. We used an optical trap to measure the effects of the stabilization on step size, unitary force and duration of the interactions at low and high load and compared the results with those obtained in an in vitro motility assay. We found that significant prolongation of lifetime of the actin-myosin complex under high load observed at high extent of tropomyosin stabilization, i.e. with double mutant, G126R/D137L, correlates with higher force in the motility assay. Also, the higher the extent of stabilization of tropomyosin, the fewer myosin molecules are needed to propel the thin filaments. The data suggest that the effects of the stabilizing mutations in tropomyosin on the myosin interaction with regulated thin filaments are mainly realized via cooperative mechanisms by increasing the size of cooperative unit.


Assuntos
Citoesqueleto de Actina/metabolismo , Músculo Esquelético/metabolismo , Miosinas/metabolismo , Tropomiosina/metabolismo , Humanos , Contração Muscular
6.
J Theor Biol ; 420: 105-116, 2017 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223172

RESUMO

A simple model of cardiac muscle was designed for multiscale simulation of heart mechanics. Relaxed cardiac muscle was described as a transversally isotropic hyperelastic material. Active tension caused by actin-myosin crossbridges depends on the ensemble averaged strain of myosin heads bound to actin. Calcium activation was modeled by Ca2+ binding to troponin-C. To account for the dependence of troponin affinity for Ca2+ on myosin heads strongly bound to actin, the kinetics of troponin binding to Ca2+ in the overlap zone of the thin and thick filaments and outside it were separated. The changes in the length of these zones during muscle shortening or lengthening were accounted for explicitly. Simplified version of the model contains only 5 ordinary differential equations (ODE). Model parameters were estimated from a limited set of experiments with skeletal and cardiac muscle. Simulations have shown that model reproduces qualitatively a number of experimental observations: steady-state force-velocity and stiffness-velocity relations; mechanical responses to step changes in muscle length or load; steep Ca2+-tension relationship and its dependence on sarcomere length tension (the Frank-Starling mechanism); tension, shortening and Ca2+-transients in twitch isometric and isotonic contractions, tension development and redevelopment upon fast change in Ca2+ concentration or muscle release followed by re-stretch. We believe that the model can be effectively used for modeling contraction and relaxation of the heart.


Assuntos
Modelos Biológicos , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Cálcio/metabolismo , Coração/fisiologia , Humanos , Cinética , Miosinas/metabolismo , Sarcômeros/ultraestrutura
7.
Eur Biophys J ; 46(4): 335-342, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27640143

RESUMO

Contraction of skeletal and cardiac muscle is controlled by Ca2+ ions via regulatory proteins, troponin (Tn) and tropomyosin (Tpm) associated with the thin actin filaments in sarcomeres. In the absence of Ca2+, Tn-C binds actin and shifts the Tpm strand to a position where it blocks myosin binding to actin, keeping muscle relaxed. According to the three-state model (McKillop and Geeves Biophys J 65:693-701, 1993), upon Ca2+ binding to Tn, Tpm rotates about the filament axis to a 'closed state' where some myosin heads can bind actin. Upon strong binding of myosin heads to actin, Tpm rotates further to an 'open' position where neighboring actin monomers also become available for myosin binding. Azimuthal Tpm movement in contracting muscle is detected by low-angle X-ray diffraction. Here we used high-resolution models of actin-Tpm filaments based on recent cryo-EM data for calculating changes in the intensities of X-ray diffraction reflections of muscle upon transitions between different states of the regulatory system. Calculated intensities of actin layer lines provide a much-improved fit to the experimental data obtained from rabbit muscle fibers in relaxed and rigor states than previous lower-resolution models. We show that the intensity of the second actin layer line at reciprocal radii from 0.15 to 0.3 nm-1 quantitatively reports the transition between different states of the regulatory system independently of the number of myosin heads bound to actin.


Assuntos
Modelos Moleculares , Movimento , Contração Muscular , Tropomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Miosinas/metabolismo , Conformação Proteica , Coelhos , Tropomiosina/química
8.
Eur Biophys J ; 44(6): 457-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26043682

RESUMO

During eccentric contraction, muscle is lengthening so that the actin-myosin cross-bridges bear a load that exceeds the force they generate during isometric contraction. Using the optical trap technique, we simulated eccentric contraction at the single molecule level and investigated the effect of load on the skeletal actomyosin lifetime at different ATP concentrations. The range of the loads was up to 17 pN above the isometric level. We found that the frequency distribution of the lifetime of the actin-bound state of the myosin molecule was biphasic: it quickly rose and then decreased slowly. The rate of the slow phase of this distribution increased with both the load and the ATP concentration. The fast phase accelerated sharply with the load, but it was independent of ATP concentration. The presence of the fast phase demonstrates that some transition(s) in the actomyosin complex occur before the myosin head becomes able to bind ATP and detach from actin. Its high sensitivity to the load indicates that the transition is load-dependent.


Assuntos
Actomiosina/química , Contração Muscular , Músculo Esquelético/metabolismo , Actomiosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Músculo Esquelético/fisiologia , Coelhos
9.
FEBS J ; 281(8): 2004-16, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24548721

RESUMO

Tropomyosin (Tm) is an α-helical coiled-coil protein that binds along the length of actin filament and plays an essential role in the regulation of muscle contraction. There are two highly conserved non-canonical residues in the middle part of the Tm molecule, Asp137 and Gly126, which are thought to impart conformational instability (flexibility) to this region of Tm which is considered crucial for its regulatory functions. It was shown previously that replacement of these residues by canonical ones (Leu substitution for Asp137 and Arg substitution for Gly126) results in stabilization of the coiled-coil in the middle of Tm and affects its regulatory function. Here we employed various methods to compare structural and functional features of Tm mutants carrying stabilizing substitutions Arg137Leu and Gly126Arg. Moreover, we for the first time analyzed the properties of Tm carrying both these substitutions within the same molecule. The results show that both substitutions similarly stabilize the Tm coiled-coil structure, and their combined action leads to further significant stabilization of the Tm molecule. This stabilization not only enhances maximal sliding velocity of regulated actin filaments in the in vitro motility assay at high Ca(2+) concentrations but also increases Ca(2+) sensitivity of the actin-myosin interaction underlying this sliding. We propose that the effects of these substitutions on the Ca(2+)-regulated actin-myosin interaction can be accounted for not only by decreased flexibility of actin-bound Tm but also by their influence on the interactions between the middle part of Tm and certain sites of the myosin head.


Assuntos
Tropomiosina/química , Tropomiosina/metabolismo , Actinas/química , Actinas/metabolismo , Cálcio/química , Cálcio/metabolismo , Miosinas/química , Miosinas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Tropomiosina/genética
10.
PLoS One ; 9(1): e85739, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465673

RESUMO

Skeletal muscles power body movement by converting free energy of ATP hydrolysis into mechanical work. During the landing phase of running or jumping some activated skeletal muscles are subjected to stretch. Upon stretch they absorb body energy quickly and effectively thus protecting joints and bones from impact damage. This is achieved because during lengthening, skeletal muscle bears higher force and has higher instantaneous stiffness than during isometric contraction, and yet consumes very little ATP. We wish to understand how the actomyosin molecules change their structure and interaction to implement these physiologically useful mechanical and thermodynamical properties. We monitored changes in the low angle x-ray diffraction pattern of rabbit skeletal muscle fibers during ramp stretch compared to those during isometric contraction at physiological temperature using synchrotron radiation. The intensities of the off-meridional layer lines and fine interference structure of the meridional M3 myosin x-ray reflection were resolved. Mechanical and structural data show that upon stretch the fraction of actin-bound myosin heads is higher than during isometric contraction. On the other hand, the intensities of the actin layer lines are lower than during isometric contraction. Taken together, these results suggest that during stretch, a significant fraction of actin-bound heads is bound non-stereo-specifically, i.e. they are disordered azimuthally although stiff axially. As the strong or stereo-specific myosin binding to actin is necessary for actin activation of the myosin ATPase, this finding explains the low metabolic cost of energy absorption by muscle during the landing phase of locomotion.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Citoesqueleto de Actina/fisiologia , Animais , Fenômenos Biomecânicos , Técnicas In Vitro , Contração Isométrica , Miosinas/fisiologia , Coelhos , Sarcômeros/fisiologia , Sarcômeros/ultraestrutura , Difração de Raios X
11.
Biophys J ; 105(4): 941-50, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23972846

RESUMO

We present a model of Ca-regulated thin filaments in cardiac muscle where tropomyosin is treated as a continuous elastic chain confined in the closed position on the actin helix by electrostatic forces. The main distinction from previous works is that the intrinsic stress-free helical shape of the tropomyosin chain was taken into account explicitly. This results in the appearance of a new, to our knowledge, tension-like term in the energy functional and the equilibrium equation. The competitive binding of calcium and the mobile segment of troponin-I to troponin-C were described by a simple kinetic scheme. The values of dimensionless model parameters were estimated from published data. A stochastic Monte Carlo simulation of calcium curves has been performed and its results were compared to published data. The model explains the high cooperativity of calcium response of the regulated thin filaments even in the absence of myosin heads. The binding of myosin heads to actin increases the calcium sensitivity while not affecting its cooperativity significantly. When the presence of calcium-insensitive troponin-C was simulated in the model, both calcium sensitivity and cooperativity decreased. All these features were previously observed experimentally.


Assuntos
Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Modelos Biológicos , Miocárdio/metabolismo , Miosinas/metabolismo , Tropomiosina/metabolismo , Troponina/metabolismo
12.
Biophys J ; 101(2): 404-10, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21767493

RESUMO

The duty ratio, or the part of the working cycle in which a myosin molecule is strongly attached to actin, determines motor processivity and is required to evaluate the force generated by each molecule. In muscle, it is equal to the fraction of myosin heads that are strongly, or stereospecifically, bound to the thin filaments. Estimates of this fraction during isometric contraction based on stiffness measurements or the intensities of the equatorial or meridional x-ray reflections vary significantly. Here, we determined this value using the intensity of the first actin layer line, A1, in the low-angle x-ray diffraction patterns of permeable fibers from rabbit skeletal muscle. We calibrated the A1 intensity by considering that the intensity in the relaxed and rigor states corresponds to 0% and 100% of myosin heads bound to actin, respectively. The fibers maximally activated with Ca(2+) at 4°C were heated to 31-34°C with a Joule temperature jump (T-jump). Rigor and relaxed-state measurements were obtained on the same fibers. The intensity of the inner part of A1 during isometric contraction compared with that in rigor corresponds to 41-43% stereospecifically bound myosin heads at near-physiological temperature, or an average force produced by a head of ~6.3 pN.


Assuntos
Contração Isométrica/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Miosinas/metabolismo , Temperatura , Animais , Coelhos , Difração de Raios X
13.
Biophys J ; 99(6): 1827-34, 2010 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-20858427

RESUMO

Raising the temperature of rabbit skeletal muscle from ∼0°C to ∼20°C has been shown to enhance the helical organization of the myosin heads and to change the intensities of the 10 and 11 equatorial reflections. We show here by time-resolved x-ray diffraction combined with temperature jump that the movement of the heads to enhance the organized myosin helix occurs at the same fast rate as the change in the intensities of the equatorial reflections. However, model calculations indicate that the change in the equatorials cannot be explained simply in terms of the movement of myosin heads. Analysis of electron micrographs of transverse sections of relaxed muscle fibers cryofixed at ∼5°C and ∼35°C shows that in addition to the reorganization of the heads the thin and thick filaments are less constrained to their positions in the hexagonal filament lattice in the warm muscle than in the cold. Incorporating the changes in filament order in model calculations reconciles these with the observed changes in equatorial reflections. We suggest the thin filaments in the cold muscle are boxed into their positions by the thermal movement of the disordered myosin heads. In the warmer muscle, the packed-down heads leave the thin filaments more room to diffuse laterally.


Assuntos
Relaxamento Muscular , Músculo Esquelético/metabolismo , Miosinas/química , Miosinas/metabolismo , Animais , Microscopia Eletrônica , Modelos Biológicos , Músculo Esquelético/fisiologia , Coelhos , Temperatura , Difração de Raios X
14.
Front Biosci (Landmark Ed) ; 14(8): 3188-213, 2009 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-19273266

RESUMO

The origin of reflections in the x-ray diffraction pattern from striated muscle and their use for understanding the structural organization of the contractile machinery are presented and discussed. Results of x-ray diffraction experiments obtained by a number of research groups using a variety of protocols revealed structural changes in contracting muscles which are interpreted in terms of molecular movements that underlie force generation. Some of these data are in line with the widely accepted 'lever arm' hypothesis which links force generation to a tilt of the light chain domain of the myosin head with respect to its motor domain. However, changes in the layer line intensities observed in response to various perturbations cannot be explained by tilting of the lever arm. Such changes, first revealed in response to temperature jumps, are interpreted as a transition of non-stereo-specifically attached myosin heads to a stereo-specifically bound state. The new 'roll and lock' model considers force-generation as a two-stage process: initial stereo-specific locking of myosin heads on actin is followed by the lever arm tilt.


Assuntos
Actinas/química , Músculos/química , Miosinas/química , Animais , Humanos , Difração de Raios X
15.
Biophys J ; 95(6): 2880-94, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18539638

RESUMO

A direct modeling approach was used to quantitatively interpret the two-dimensional x-ray diffraction patterns obtained from contracting mammalian skeletal muscle. The dependence of the calculated layer line intensities on the number of myosin heads bound to the thin filaments, on the conformation of these heads and on their mode of attachment to actin, was studied systematically. Results of modeling are compared to experimental data collected from permeabilized fibers from rabbit skeletal muscle contracting at 5 degrees C and 30 degrees C and developing low and high isometric tension, respectively. The results of the modeling show that: i), the intensity of the first actin layer line is independent of the tilt of the light chain domains of myosin heads and can be used as a measure of the fraction of myosin heads stereospecifically attached to actin; ii), during isometric contraction at near physiological temperature, the fraction of these heads is approximately 40% and the light chain domains of the majority of them are more perpendicular to the filament axis than in rigor; and iii), at low temperature, when isometric tension is low, a majority of the attached myosin heads are bound to actin nonstereospecifically whereas at high temperature and tension they are bound stereospecifically.


Assuntos
Modelos Moleculares , Contração Muscular , Músculo Esquelético/química , Músculo Esquelético/fisiologia , Animais , Músculo Esquelético/metabolismo , Miosinas/química , Miosinas/metabolismo , Conformação Proteica , Coelhos , Estereoisomerismo , Especificidade por Substrato , Temperatura , Difração de Raios X
16.
Biochemistry ; 47(1): 283-91, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18067324

RESUMO

Myosin interacts with actin during its enzymatic cycle, and actin stimulates myosin's ATPase activity. There are extensive interaction surfaces on both actin and myosin. Several surface loops of myosin play different roles in actomyosin interaction. However, the functional role of loop 4 in actin binding is still ambiguous. We explored the role of loop 4 by either mutating its conserved acidic group, Glu-365, to Gln (E365Q), or by replacing the entire loop with three glycines (DeltaAL) in a Dictyostelium discoideum myosin II motor domain (MD) containing a single tryptophan residue. This native tryptophan (Trp-501) is located in the relay loop and is sensitive to nucleotide binding and lever-arm movement. Fluorescence and fast kinetic measurements showed that the mutations in loop 4 do not alter the enzymatic steps of the ATPase cycle in the absence of actin. By contrast, actin binding was significantly weakened in the absence and presence of ADP and ATP in both mutants. Because the strength of actin-myosin interaction increases in the order of rigor, ADP, and ATP complex, we conclude that loop 4 is a functional actin-binding region that stabilizes actomyosin complex, particularly in weak actin-binding states.


Assuntos
Actinas/metabolismo , Actomiosina/metabolismo , Miosinas/metabolismo , Actinas/química , Actinas/genética , Actomiosina/química , Actomiosina/genética , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação/genética , Dictyostelium/genética , Dictyostelium/metabolismo , Cinética , Mutação , Miosinas/química , Miosinas/genética , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
17.
Structure ; 13(1): 131-41, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15642268

RESUMO

Muscle force results from the interaction of the globular heads of myosin-II with actin filaments. We studied the structure-function relationship in the myosin motor in contracting muscle fibers by using temperature jumps or length steps combined with time-resolved, low-angle X-ray diffraction. Both perturbations induced simultaneous changes in the active muscle force and in the extent of labeling of the actin helix by stereo-specifically bound myosin heads at a constant total number of attached heads. The generally accepted hypothesis assumes that muscle force is generated solely by tilting of the lever arm, or the light chain domain of the myosin head, about its catalytic domain firmly bound to actin. Data obtained suggest an additional force-generating step: the "roll and lock" transition of catalytic domains of non-stereo-specifically attached heads to a stereo-specifically bound state. A model based on this scheme is described to quantitatively explain the data.


Assuntos
Modelos Estruturais , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Actinas/química , Actinas/fisiologia , Animais , Fenômenos Biomecânicos , Domínio Catalítico , Cinética , Modelos Biológicos , Modelos Moleculares , Contração Muscular , Miosinas/química , Miosinas/fisiologia , Estrutura Terciária de Proteína , Coelhos , Temperatura , Difração de Raios X
18.
Biophys J ; 88(3): 1902-10, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15596509

RESUMO

Calculation of the size of the power stroke of the myosin motor in contracting muscle requires knowledge of the compliance of the myofilaments. Current estimates of actin compliance vary significantly introducing uncertainty in the mechanical parameters of the motor. Using x-ray diffraction on small bundles of permeabilized fibers from rabbit muscle we show that strong binding of myosin heads changes directly the actin helix. The spacing of the 2.73-nm meridional x-ray reflection increased by 0.22% when relaxed fibers were put into low-tension rigor (<10 kN/m(2)) demonstrating that strongly bound myosin heads elongate the actin filaments even in the absence of external tension. The pitch of the 5.9-nm actin layer line increased by approximately 0.62% and that of the 5.1-nm layer line decreased by approximately 0.26%, suggesting that the elongation is accompanied by a decrease in its helical angle (approximately 166 degrees) by approximately 0.8 degrees. This effect explains the difference between actin compliance revealed from mechanical experiments with single fibers and from x-ray diffraction on whole muscles. Our measurement of actin compliance obtained by applying tension to fibers in rigor is consistent with the results of mechanical measurements.


Assuntos
Actinas/química , Micromanipulação/métodos , Proteínas Motores Moleculares/química , Fibras Musculares Esqueléticas/química , Miosinas/química , Estimulação Física/métodos , Sarcômeros/química , Actinas/análise , Animais , Sítios de Ligação , Células Cultivadas , Elasticidade , Miosinas/análise , Ligação Proteica , Conformação Proteica , Músculos Psoas/química , Ratos , Rotação , Estresse Mecânico
19.
Acta Crystallogr A ; 58(Pt 3): 292-4, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11961291

RESUMO

An expression for cylindrically averaged intensity diffracted by a partially occupied helix (i.e. by a set of identical molecules bound to some, but not all, points of a discrete helix) is derived. The result is compared with previous studies and its application to muscle diffraction is discussed.


Assuntos
Actinas/química , Estrutura Secundária de Proteína , Actinas/metabolismo , Simulação por Computador , Contração Muscular , Músculo Esquelético/química , Miosinas/metabolismo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA