Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Chem ; 404(11-12): 1003-1023, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37454246

RESUMO

The ribosomal RNA precursor (pre-rRNA) comprises three of the four ribosomal RNAs and is synthesized by RNA polymerase (Pol) I. Here, we describe the mechanisms of Pol I transcription in human cells with a focus on recent insights gained from structure-function analyses. The comparison of Pol I-specific structural and functional features with those of other Pols and with the excessively studied yeast system distinguishes organism-specific from general traits. We explain the organization of the genomic rDNA loci in human cells, describe the Pol I transcription cycle regarding structural changes in the enzyme and the roles of human Pol I subunits, and depict human rDNA transcription factors and their function on a mechanistic level. We disentangle information gained by direct investigation from what had apparently been deduced from studies of the yeast enzymes. Finally, we provide information about how Pol I mutations may contribute to developmental diseases, and why Pol I is a target for new cancer treatment strategies, since increased rRNA synthesis was correlated with rapidly expanding cell populations.


Assuntos
Precursores de RNA , RNA Ribossômico , Humanos , RNA Ribossômico/genética , Precursores de RNA/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , RNA Polimerase I/genética , RNA Polimerase I/química , RNA Polimerase I/metabolismo , DNA Ribossômico/genética
2.
Nat Chem Biol ; 13(7): 709-714, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28459440

RESUMO

Thiolutin is a disulfide-containing antibiotic and anti-angiogenic compound produced by Streptomyces. Its biological targets are not known. We show that reduced thiolutin is a zinc chelator that inhibits the JAB1/MPN/Mov34 (JAMM) domain-containing metalloprotease Rpn11, a deubiquitinating enzyme of the 19S proteasome. Thiolutin also inhibits the JAMM metalloproteases Csn5, the deneddylase of the COP9 signalosome; AMSH, which regulates ubiquitin-dependent sorting of cell-surface receptors; and BRCC36, a K63-specific deubiquitinase of the BRCC36-containing isopeptidase complex and the BRCA1-BRCA2-containing complex. We provide evidence that other dithiolopyrrolones also function as inhibitors of JAMM metalloproteases.


Assuntos
Quelantes/farmacologia , Inibidores Enzimáticos/farmacologia , Metaloproteases/antagonistas & inibidores , Transativadores/antagonistas & inibidores , Zinco/química , Quelantes/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Células HeLa , Humanos , Metaloproteases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Pirrolidinonas/química , Pirrolidinonas/metabolismo , Pirrolidinonas/farmacologia , Relação Estrutura-Atividade , Transativadores/metabolismo
3.
Mol Microbiol ; 71(4): 989-1002, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19183282

RESUMO

The general subunit of all three eukaryotic RNA polymerases, Rpb12, and subunit P of the archaeal enzyme show sequence similarities in their N-terminal zinc ribbon and some highly conserved residues in the C-terminus. We report here that archaeal subunit P under the control of a strong yeast promoter could complement the lethal phenotype of a RPB12 deletion mutant and that subunit Rpb12 from yeast can functionally replace subunit P during reconstitution of the archaeal RNA polymerase. The DeltaP enzyme is unable to form stable open complexes, but can efficiently extend a dinucleotide on a premelted template or RNA on an elongation scaffold. This suggests that subunit P is directly or indirectly involved in promoter opening. The activity of the DeltaP enzyme can be rescued by the addition of Rpb12 or subunit P to transcription reactions. Mutation of cysteine residues in the zinc ribbon impair the activity of the enzyme in several assays and this mutated form of P is rapidly replaced by wild-type P in transcription reactions. The conserved zinc ribbon in the N-terminus seems to be important for proper interaction of the complete subunit with other RNA polymerase subunits and a 17-amino-acid C-terminal peptide is sufficient to support all basic RNA polymerase functions in vitro.


Assuntos
Proteínas Arqueais/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Subunidades Proteicas/metabolismo , Pyrococcus furiosus/enzimologia , Sequência de Aminoácidos , Proteínas Arqueais/genética , Sequência Conservada , RNA Polimerases Dirigidas por DNA/genética , Teste de Complementação Genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Subunidades Proteicas/genética , Pyrococcus furiosus/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Transcrição Gênica
4.
Nature ; 458(7235): 219-22, 2009 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-19158678

RESUMO

Chromosome condensation and the global repression of gene transcription are features of mitosis in most eukaryotes. The logic behind this phenomenon is that chromosome condensation prevents the activity of RNA polymerases. In budding yeast, however, transcription was proposed to be continuous during mitosis. Here we show that Cdc14, a protein phosphatase required for nucleolar segregation and mitotic exit, inhibits transcription of yeast ribosomal genes (rDNA) during anaphase. The phosphatase activity of Cdc14 is required for RNA polymerase I (Pol I) inhibition in vitro and in vivo. Moreover Cdc14-dependent inhibition involves nucleolar exclusion of Pol I subunits. We demonstrate that transcription inhibition is necessary for complete chromosome disjunction, because ribosomal RNA (rRNA) transcripts block condensin binding to rDNA, and show that bypassing the role of Cdc14 in nucleolar segregation requires in vivo degradation of nascent transcripts. Our results show that transcription interferes with chromosome condensation, not the reverse. We conclude that budding yeast, like most eukaryotes, inhibit Pol I transcription before segregation as a prerequisite for chromosome condensation and faithful genome separation.


Assuntos
Anáfase/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Transcrição Gênica/fisiologia , Adenosina Trifosfatases/metabolismo , Segregação de Cromossomos , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Ligação Proteica/fisiologia , RNA Fúngico/metabolismo , RNA Ribossômico/metabolismo , Saccharomyces cerevisiae/metabolismo
5.
EMBO J ; 21(15): 4136-44, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12145213

RESUMO

The spatial distribution of four subunits specifically associated to the yeast DNA-dependent RNA polymerase I (RNA pol I) was studied by electron microscopy. A structural model of the native enzyme was determined by cryo-electron microscopy from isolated molecules and was compared with the atomic structure of RNA pol II Delta 4/7, which lacks the specific polypeptides. The two models were aligned and a difference map revealed four additional protein densities present in RNA pol I, which were characterized by immunolabelling. A protruding protein density named stalk was found to contain the RNA pol I-specific subunits A43 and A14. The docking with the atomic structure showed that the stalk protruded from the structure at the same site as the C-terminal domain (CTD) of the largest subunit of RNA pol II. Subunit A49 was placed on top of the clamp whereas subunit A34.5 bound at the entrance of the DNA binding cleft, where it could contact the downstream DNA. The location of the RNA pol I-specific subunits is correlated with their biological activity.


Assuntos
RNA Polimerase I/análise , Proteínas de Saccharomyces cerevisiae/análise , Saccharomyces cerevisiae/enzimologia , Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador , Modelos Moleculares , Coloração Negativa , Conformação Proteica , Mapeamento de Interação de Proteínas , Subunidades Proteicas , RNA Polimerase I/ultraestrutura , RNA Polimerase II/química , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Deleção de Sequência
6.
Cell ; 109(3): 297-306, 2002 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-12015980

RESUMO

TFIIH is a multisubunit protein complex that plays an essential role in nucleotide excision repair and transcription of protein-coding genes. Here, we report that TFIIH is also required for ribosomal RNA synthesis in vivo and in vitro. In yeast, pre-rRNA synthesis is impaired in TFIIH ts strains. In a mouse, part of cellular TFIIH is localized within the nucleolus and is associated with subpopulations of both RNA polymerase I and the basal factor TIF-IB. Transcription systems lacking TFIIH are inactive and exogenous TFIIH restores transcriptional activity. TFIIH is required for productive but not abortive rDNA transcription, implying a postinitiation role in transcription. The results provide a molecular link between RNA polymerase I transcription and transcription-coupled repair of active ribosomal RNA genes.


Assuntos
DNA Helicases , RNA Polimerase I/metabolismo , RNA Ribossômico/genética , Fatores de Transcrição TFII , Fatores de Transcrição/metabolismo , Animais , Carcinoma de Ehrlich/genética , Carcinoma de Ehrlich/metabolismo , Linhagem Celular , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Sistema Livre de Células , Clonagem Molecular , DNA Ribossômico/genética , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Humanos , Proteínas/metabolismo , Proteínas/ultraestrutura , RNA Polimerase I/genética , RNA Ribossômico/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Fator de Transcrição TFIIH , Fatores de Transcrição/deficiência , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/ultraestrutura , Transcrição Gênica , Proteína Grupo D do Xeroderma Pigmentoso , Leveduras/genética , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA