Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 212(2): 258-270, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38079221

RESUMO

Oxidants participate in lymphocyte activation and function. We previously demonstrated that eliminating the activity of NADPH oxidase 2 (NOX2) significantly impaired the effectiveness of autoreactive CD8+ CTLs. However, the molecular mechanisms impacting CD8+ T cell function remain unknown. In the present study, we examined the role of NOX2 in both NOD mouse and human CD8+ T cell function. Genetic ablation or chemical inhibition of NOX2 in CD8+ T cells significantly suppressed activation-induced expression of the transcription factor T-bet, the master transcription factor of the Tc1 cell lineage, and T-bet target effector genes such as IFN-γ and granzyme B. Inhibition of NOX2 in both human and mouse CD8+ T cells prevented target cell lysis. We identified that superoxide generated by NOX2 must be converted into hydrogen peroxide to transduce the redox signal in CD8+ T cells. Furthermore, we show that NOX2-generated oxidants deactivate the tumor suppressor complex leading to activation of RheB and subsequently mTOR complex 1. These results indicate that NOX2 plays a nonredundant role in TCR-mediated CD8+ T cell effector function.


Assuntos
Linfócitos T CD8-Positivos , NADPH Oxidase 2 , Espécies Reativas de Oxigênio , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/imunologia , Granzimas/metabolismo , Peróxido de Hidrogênio/metabolismo , Inflamação/imunologia , Interferon gama/metabolismo , Ativação Linfocitária , Camundongos Endogâmicos NOD , NADPH Oxidase 2/antagonistas & inibidores , NADPH Oxidase 2/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Proteínas com Domínio T/metabolismo , Masculino , Feminino , Adulto Jovem
2.
Am J Transplant ; 23(4): 498-511, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36731781

RESUMO

The loss of functional ß-cell mass is a hallmark of type 1 diabetes. Islet transplantation represents a promising alternative approach, but immune-mediated graft destruction remains a major challenge. We sought to use islet encapsulation technologies to improve graft survival and function without systemic immunosuppression. We hypothesized islet encapsulation with nanothin coatings consisting of tannic acid (TA), an antioxidant; poly(N-vinylpyrrolidone) (PVPON), a biocompatible polymer; and cytotoxic T cell-associated antigen 4 immunoglobulin (CTLA-4-Ig), an inhibitory immune receptor, will elicit localized immunosuppression to prolong islet allograft function and suppress effector T cell responses. In the absence of systemic immunosuppression, we demonstrated (PVPON/TA/CTLA-4-Ig)-encapsulated NOD.Rag islet grafts maintain function significantly longer than control IgG-containing (PVPON/TA/IgG) and nonencapsulated controls after transplantation into diabetic C57BL/6 mice. This protection coincided with diminished proinflammatory macrophage responses mediated by signal transducer and activator of transcription 1 signaling, decreased proinflammatory T cell effector responses, and CTLA-4-Ig-specific concomitant increases in anergic CD4+ T cells and regulatory T cells. Our results provide evidence that conjugation of CTLA-4-Ig to (PVPON/TA) coatings can suppress T cell activation, enhance regulatory T cell populations, prolong islet allograft survival, and induce localized immunosuppression after transplantation.


Assuntos
Antioxidantes , Transplante das Ilhotas Pancreáticas , Animais , Camundongos , Abatacepte , Camundongos Endogâmicos NOD , Linfócitos T Citotóxicos , Camundongos Endogâmicos C57BL , Transplante das Ilhotas Pancreáticas/métodos , Antígeno CTLA-4 , Sobrevivência de Enxerto , Macrófagos , Aloenxertos , Imunoglobulina G , Camundongos Endogâmicos BALB C
3.
JCI Insight ; 8(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36512407

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease resulting in pancreatic ß cell destruction. Coxsackievirus B3 (CVB3) infection and melanoma differentiation-associated protein 5-dependent (MDA5-dependent) antiviral responses are linked with T1D development. Mutations within IFIH1, coding for MDA5, are correlated with T1D susceptibility, but how these mutations contribute to T1D remains unclear. Utilizing nonobese diabetic (NOD) mice lacking Ifih1 expression (KO) or containing an in-frame deletion within the ATPase site of the helicase 1 domain of MDA5 (ΔHel1), we tested the hypothesis that partial or complete loss-of-function mutations in MDA5 would delay T1D by impairing proinflammatory pancreatic macrophage and T cell responses. Spontaneous T1D developed in female NOD and KO mice similarly, but was significantly delayed in ΔHel1 mice, which may be partly due to a concomitant increase in myeloid-derived suppressor cells. Interestingly, KO male mice had increased spontaneous T1D compared with NOD mice. Whereas NOD and KO mice developed CVB3-accelerated T1D, ΔHel1 mice were protected partly due to decreased type I IFNs, pancreatic infiltrating TNF+ macrophages, IFN-γ+CD4+ T cells, and perforin+CD8+ T cells. Furthermore, ΔHel1 MDA5 protein had reduced ATP hydrolysis compared with wild-type MDA5. Our results suggest that dampened MDA5 function delays T1D, yet loss of MDA5 promotes T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Masculino , Feminino , Camundongos , Animais , Helicase IFIH1 Induzida por Interferon , Camundongos Endogâmicos NOD , Pâncreas/metabolismo , Macrófagos/metabolismo
4.
Diabetes ; 71(12): 2793-2803, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36041196

RESUMO

Hybrid insulin peptides (HIPs) form in pancreatic ß-cells through the formation of peptide bonds between proinsulin fragments and other peptides. HIPs have been identified in pancreatic islets by mass spectrometry and are targeted by CD4 T cells in patients with type 1 diabetes (T1D) as well as by pathogenic CD4 T-cell clones in nonobese diabetic (NOD) mice. The mechanism of HIP formation is currently poorly understood; however, it is well established that proteases can drive the formation of new peptide bonds in a side reaction during peptide bond hydrolysis. Here, we used a proteomic strategy on enriched insulin granules and identified cathepsin D (CatD) as the primary protease driving the specific formation of HIPs targeted by disease-relevant CD4 T cells in T1D. We also established that NOD islets deficient in cathepsin L (CatL), another protease implicated in the formation of disease-relevant HIPs, contain elevated levels of HIPs, indicating a role for CatL in the proteolytic degradation of HIPs. In summary, our data suggest that CatD may be a therapeutic target in efforts to prevent or slow the autoimmune destruction of ß-cells mediated by HIP-reactive CD4 T cells in T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Camundongos , Animais , Diabetes Mellitus Tipo 1/metabolismo , Insulina , Catepsina D , Proteômica , Camundongos Endogâmicos NOD , Peptídeos , Linfócitos T CD4-Positivos , Insulina Regular Humana
5.
JCI Insight ; 7(4)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35015736

RESUMO

Type 1 diabetes is an autoimmune disease characterized by insulin-producing ß cell destruction. Although islet transplantation restores euglycemia and improves patient outcomes, an ideal transplant site remains elusive. Brown adipose tissue (BAT) has a highly vascularized and antiinflammatory microenvironment. Because these tissue features can promote islet graft survival, we hypothesized that islets transplanted into BAT will maintain islet graft and BAT function while delaying immune-mediated rejection. We transplanted syngeneic and allogeneic islets into BAT or under the kidney capsule of streptozotocin-induced diabetic NOD.Rag and NOD mice to investigate islet graft function, BAT function, metabolism, and immune-mediated rejection. Islet grafts within BAT restored euglycemia similarly to kidney capsule controls. Islets transplanted in BAT maintained expression of islet hormones and transcription factors and were vascularized. Compared with those in kidney capsule and euglycemic mock-surgery controls, no differences in glucose or insulin tolerance, thermogenic regulation, or energy expenditure were observed with islet grafts in BAT. Immune profiling of BAT revealed enriched antiinflammatory macrophages and T cells. Compared with the kidney capsule control, there were significant delays in autoimmune and allograft rejection of islets transplanted in BAT, possibly due to increased antiinflammatory immune populations. Our data support BAT as an alternative islet transplant site that may improve graft survival.


Assuntos
Tecido Adiposo Marrom/cirurgia , Diabetes Mellitus Tipo 1/cirurgia , Regulação da Expressão Gênica , Rejeição de Enxerto/genética , Proteínas de Homeodomínio/genética , Transplante das Ilhotas Pancreáticas/métodos , Transativadores/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Diferenciação Celular , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/metabolismo , Sobrevivência de Enxerto , Proteínas de Homeodomínio/biossíntese , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , RNA/genética , Transativadores/biossíntese , Transplante Homólogo
6.
Immunohorizons ; 4(9): 530-545, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917736

RESUMO

Efficient T cell activation and effector responses require an antigenic peptide presented on the MHC complex to the TCR (signal 1), costimulatory molecule interactions between T cells and APCs (signal 2), and the synthesis of innate immune-derived proinflammatory cytokines and reactive oxygen species (signal 3). We previously demonstrated that the third signal dissipation impairs autoreactive T cell activation. In this study, we tested the hypothesis that encapsulation of Ag with an antioxidant-containing biomaterial would induce Ag-specific hyporesponsiveness. We cocultured bone marrow-derived dendritic cells with microcapsules composed of multilayer-assembled poly(N-vinylpyrrolidone) (PVPON) and the antioxidant tannic acid (TA). LPS-activated dendritic cells cocultured with (PVPON/TA) microcapsules displayed a decrease in TNF-α, IL-12p70, and CXCL10 synthesis. To study Ag-specific T cell responses, we incorporated chicken OVA into the (PVPON/TA) multilayers and stimulated OT-II splenocytes in a primary recall assay. Flow cytometric analysis demonstrated a significant inhibition of CD4 T cell activation markers, upregulation of CTLA-4 and PD-1, and blunted secretion of IL-2, IFN-γ, TNF-α, and CXCL10 by ELISA. To test microcapsule efficacy in vivo, we immunized OT-II mice with (PVPON/TA)-OVA microcapsules and performed an OVA recall assay. Immunization of OT-II mice with (PVPON/TA)-OVA microcapsules elicited a decrease in CD4 T cell differentiation and effector responses including IFN-γ, TNF-α, CCL3, and CCL5 by ELISA compared with OVA immunization alone. These data show that microcapsules composed of antioxidant and encapsulated Ags can effectively blunt innate immune-derived proinflammatory third signal synthesis necessary for Ag-specific effector T cell responses and present a prospective strategy for T cell-mediated autoimmunity.


Assuntos
Cápsulas/farmacologia , Polifenóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologia , Animais , Diferenciação Celular/imunologia , Citocinas/efeitos dos fármacos , Citocinas/imunologia , Células Dendríticas/imunologia , Citometria de Fluxo , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos NOD
7.
Microorganisms ; 8(7)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635205

RESUMO

Type 1 diabetes (T1D) is a polygenic autoimmune disease characterized by immune-mediated destruction of insulin-producing ß-cells. The concordance rate for T1D in monozygotic twins is ≈30-50%, indicating that environmental factors also play a role in T1D development. Previous studies have demonstrated that enterovirus infections such as coxsackievirus type B (CVB) are associated with triggering T1D. Prior to autoantibody development in T1D, viral RNA and antibodies against CVB can be detected within the blood, stool, and pancreata. An innate pathogen recognition receptor, melanoma differentiation-associated protein 5 (MDA5), which is encoded by the IFIH1 gene, has been associated with T1D onset. It is unclear how single nucleotide polymorphisms in IFIH1 alter the structure and function of MDA5 that may lead to exacerbated antiviral responses contributing to increased T1D-susceptibility. Binding of viral dsRNA via MDA5 induces synthesis of antiviral proteins such as interferon-alpha and -beta (IFN-α/ß). Viral infection and subsequent IFN-α/ß synthesis can lead to ER stress within insulin-producing ß-cells causing neo-epitope generation, activation of ß-cell-specific autoreactive T cells, and ß-cell destruction. Therefore, an interplay between genetics, enteroviral infections, and antiviral responses may be critical for T1D development.

8.
Diabetes ; 69(9): 1948-1960, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32586979

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease of insulin-producing ß-cells. Islet transplantation is a promising treatment for T1D, but long-term graft viability and function remain challenging. Oxidative stress plays a key role in the activation of alloreactive and autoreactive immunity toward the engrafted islets. Therefore, targeting these pathways by encapsulating islets with an antioxidant may delay immune-mediated rejection. Utilizing a layer-by-layer approach, we generated nanothin encapsulation materials containing tannic acid (TA), a polyphenolic compound with redox scavenging and anti-inflammatory effects, and poly(N-vinylpyrrolidone) (PVPON), a biocompatible polymer. We hypothesize that transplantation of PVPON/TA-encapsulated allogeneic C57BL/6 islets into diabetic NOD mice will prolong graft function and elicit localized immunosuppression. In the absence of systemic immunosuppression, diabetic recipients containing PVPON/TA-encapsulated islets maintained euglycemia and delayed graft rejection significantly longer than those receiving nonencapsulated islets. Transplantation of PVPON/TA-encapsulated islets was immunomodulatory because gene expression and flow cytometric analysis revealed significantly decreased immune cell infiltration, synthesis of reactive oxygen species, inflammatory chemokines, cytokines, CD8 T-cell effector responses, and concomitant increases in alternatively activated M2 macrophage and dendritic cell phenotypes. Our results provide evidence that reducing oxidative stress following allotransplantation of PVPON/TA-encapsulated islets can elicit localized immunosuppression and potentially delay graft destruction in future human islet transplantation studies.


Assuntos
Diabetes Mellitus Experimental/terapia , Rejeição de Enxerto/prevenção & controle , Imunossupressores/uso terapêutico , Transplante das Ilhotas Pancreáticas/métodos , Taninos/uso terapêutico , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/metabolismo , Rejeição de Enxerto/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Espécies Reativas de Oxigênio/metabolismo
9.
Free Radic Biol Med ; 125: 81-89, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29723665

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease culminating in the destruction of insulin-producing pancreatic ß-cells. While ultimately a T cell-mediated disease, macrophages play an indispensable role in disease initiation and progression. Infiltrating macrophages generate an inflammatory environment by releasing NADPH oxidase-derived superoxide and proinflammatory cytokines. The synthesis of reactive oxygen species (ROS) is acknowledged as putative factors contributing to autoimmunity and ß-cell damage in T1D. In addition to direct lysis, free radicals collectively participate in ß-cell destruction by providing a redox-dependent third signal necessary for islet-reactive CD4 and CD8 T cell maturation and by inducing oxidative post-translational modifications of ß-cell epitopes to further exacerbate autoimmune responses. This review will provide an overview of macrophage function and a synergistic cross-talk with redox biology that contributes to autoimmune dysregulation in T1D.


Assuntos
Autoimunidade/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Inflamação/fisiopatologia , Macrófagos/enzimologia , NADPH Oxidases/metabolismo , Animais , Humanos , Macrófagos/imunologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologia
10.
Mol Metab ; 12: 48-61, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29731256

RESUMO

OBJECTIVE: Breakthroughs in HIV treatment, especially combination antiretroviral therapy (ART), have massively reduced AIDS-associated mortality. However, ART administration amplifies the risk of non-AIDS defining illnesses including obesity, diabetes, and cardiovascular disease, collectively known as metabolic syndrome. Initial reports suggest that ART-associated risk of metabolic syndrome correlates with socioeconomic status, a multifaceted finding that encompasses income, race, education, and diet. Therefore, determination of causal relationships is extremely challenging due to the complex interplay between viral infection, ART, and the many environmental factors. METHODS: In the current study, we employed a mouse model to specifically examine interactions between ART and diet that impacts energy balance and glucose metabolism. Previous studies have shown that high-fat feeding induces persistent low-grade systemic and adipose tissue inflammation contributing to insulin resistance and metabolic dysregulation via adipose-infiltrating macrophages. Studies herein test the hypothesis that ART potentiates the inflammatory effects of a high-fat diet (HFD). C57Bl/6J mice on a HFD or standard chow containing ART or vehicle, were subjected to functional metabolic testing, RNA-sequencing of epididymal white adipose tissue (eWAT), and array-based kinomic analysis of eWAT-infiltrating macrophages. RESULTS: ART-treated mice on a HFD displayed increased fat mass accumulation, impaired glucose tolerance, and potentiated insulin resistance. Gene set enrichment and kinomic array analyses revealed a pro-inflammatory transcriptional signature depicting granulocyte migration and activation. CONCLUSION: The current study reveals a HFD-ART interaction that increases inflammatory transcriptional pathways and impairs glucose metabolism, energy balance, and metabolic dysfunction.


Assuntos
Antirretrovirais/efeitos adversos , Intolerância à Glucose/etiologia , Obesidade/etiologia , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Antirretrovirais/farmacologia , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/metabolismo , Resistência à Insulina , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Transcriptoma
11.
J Immunol ; 200(1): 61-70, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29158420

RESUMO

Coxsackievirus B infections are suspected environmental triggers of type 1 diabetes (T1D) and macrophage antiviral responses may provide a link to virus-induced T1D. We previously demonstrated an important role for NADPH oxidase (NOX)-derived superoxide production during T1D pathogenesis, as NOX-deficient NOD mice (NOD.Ncf1m1J ) were protected against T1D due, in part, to impaired proinflammatory TLR signaling in NOD.Ncf1m1J macrophages. Therefore, we hypothesized that loss of NOX-derived superoxide would dampen diabetogenic antiviral macrophage responses and protect from virus-induced diabetes. Upon infection with a suspected diabetogenic virus, Coxsackievirus B3 (CB3), NOD.Ncf1m1J mice remained resistant to virus-induced autoimmune diabetes. A concomitant decrease in circulating inflammatory chemokines, blunted antiviral gene signature within the pancreas, and reduced proinflammatory M1 macrophage responses were observed. Importantly, exogenous superoxide addition to CB3-infected NOD.Ncf1m1J bone marrow-derived macrophages rescued the inflammatory antiviral M1 macrophage response, revealing reduction-oxidation-dependent mechanisms of signal transducer and activator of transcription 1 signaling and dsRNA viral sensors in macrophages. We report that superoxide production following CB3 infection may exacerbate pancreatic ß cell destruction in T1D by influencing proinflammatory M1 macrophage responses, and mechanistically linking oxidative stress, inflammation, and diabetogenic virus infections.


Assuntos
Infecções por Coxsackievirus/imunologia , Diabetes Mellitus Tipo 1/imunologia , Enterovirus/imunologia , Células Secretoras de Insulina/imunologia , Macrófagos/imunologia , NADPH Oxidases/metabolismo , Superóxidos/metabolismo , Animais , Apoptose , Células Cultivadas , Quimiocinas/metabolismo , Infecções por Coxsackievirus/complicações , Diabetes Mellitus Tipo 1/etiologia , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos NOD , NADPH Oxidases/genética , Estresse Oxidativo , RNA Viral/imunologia , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais
12.
Antioxid Redox Signal ; 29(14): 1373-1398, 2018 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29037052

RESUMO

SIGNIFICANCE: Type 1 diabetes (T1D) is an autoimmune disease resulting in ß-cell destruction mediated by islet-infiltrating leukocytes. The role of oxidative stress in human and murine models of T1D is highly significant as these noxious molecules contribute to diabetic complications and ß-cell lysis, but their direct impact on dysregulated autoimmune responses is highly understudied. Pro-inflammatory macrophages play a vital role in the initiation and effector phases of T1D by producing free radicals and pro-inflammatory cytokines to facilitate ß-cell destruction and to present antigen to autoreactive T cells. Recent Advances: Redox modulation of macrophage functions may play critical roles in autoimmunity. These include enhancing pro-inflammatory innate immune signaling pathways in response to environmental triggers, enforcing an M1 macrophage differentiation program, controlling antigen processing, and altering peptide recognition by oxidative post-translational modification. Therefore, an oxidative environment may act on multiple macrophage functions to orchestrate T1D pathogenesis. CRITICAL ISSUES: Mechanisms involved in the initiation of T1D remain unclear, making preventive and early therapeutics difficult to develop. Although many of these advances in the redox regulation of macrophages are in their infancy, they provide insight into how oxidative stress aids in the precipitating event of autoimmune activation. FUTURE DIRECTIONS: Future studies should be aimed at mechanistically determining which redox-regulated macrophage functions are pertinent in T1D pathogenesis, as well as at investigating potential targetable therapeutics to halt and/or dampen innate immune activation in T1D.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Imunidade Inata/imunologia , Macrófagos/imunologia , Animais , Humanos , Ativação de Macrófagos/imunologia , Oxirredução
13.
Biomaterials ; 128: 19-32, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28285194

RESUMO

Type 1 Diabetes (T1D) is a chronic pro-inflammatory autoimmune disease consisting of islet-infiltrating leukocytes involved in pancreatic ß-cell lysis. One promising treatment for T1D is islet transplantation; however, clinical application is constrained due to limited islet availability, adverse effects of immunosuppressants, and declining graft survival. Islet encapsulation may provide an immunoprotective barrier to preserve islet function and prevent immune-mediated rejection after transplantation. We previously demonstrated that a novel cytoprotective nanothin multilayer coating for islet encapsulation consisting of tannic acid (TA), an immunomodulatory antioxidant, and poly(N-vinylpyrrolidone) (PVPON), was efficacious in dampening in vitro immune responses involved in transplant rejection and preserving in vitro islet function. However, the ability of (PVPON/TA) to maintain islet function in vivo and reverse diabetes has not been tested. Recent evidence has demonstrated that modulation of redox status can affect pro-inflammatory immune responses. Therefore, we hypothesized that transplanted (PVPON/TA)-encapsulated islets can restore euglycemia to diabetic mice and provide an immunoprotective barrier. Our results demonstrate that (PVPON/TA) nanothin coatings can significantly decrease in vitro chemokine synthesis and diabetogenic T cell migration. Importantly, (PVPON/TA)-encapsulated islets restored euglycemia after transplantation into diabetic mice. Our results demonstrate that (PVPON/TA)-encapsulated islets may suppress immune responses and enhance islet allograft acceptance in patients with T1D.


Assuntos
Quimiocinas/biossíntese , Materiais Revestidos Biocompatíveis/farmacologia , Mediadores da Inflamação/metabolismo , Ilhotas Pancreáticas/fisiologia , Polifenóis/farmacologia , Linfócitos T/citologia , Animais , Antígeno B7-2/metabolismo , Biomarcadores/metabolismo , Quimiotaxia/efeitos dos fármacos , Técnicas de Cocultura , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Radicais Livres/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Transplante das Ilhotas Pancreáticas , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Poli I-C/farmacologia , Pirrolidinonas/síntese química , Pirrolidinonas/química , Baço/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
14.
J Biol Chem ; 291(44): 23268-23281, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27650501

RESUMO

Macrophages are important in innate and adaptive immunity. Macrophage participation in inflammation or tissue repair is directed by various extracellular signals and mediated by multiple intracellular pathways. Activation of group VIA phospholipase A2 (iPLA2ß) causes accumulation of arachidonic acid, lysophospholipids, and eicosanoids that can promote inflammation and pathologic states. We examined the role of iPLA2ß in peritoneal macrophage immune function by comparing wild type (WT) and iPLA2ß-/- mouse macrophages. Compared with WT, iPLA2ß-/- macrophages exhibited reduced proinflammatory M1 markers when classically activated. In contrast, anti-inflammatory M2 markers were elevated under naïve conditions and induced to higher levels by alternative activation in iPLA2ß-/- macrophages compared with WT. Induction of eicosanoid (12-lipoxygenase (12-LO) and cyclooxygenase 2 (COX2))- and reactive oxygen species (NADPH oxidase 4 (NOX4))-generating enzymes by classical activation pathways was also blunted in iPLA2ß-/- macrophages compared with WT. The effects of inhibitors of iPLA2ß, COX2, or 12-LO to reduce M1 polarization were greater than those to enhance M2 polarization. Certain lipids (lysophosphatidylcholine, lysophosphatidic acid, and prostaglandin E2) recapitulated M1 phenotype in iPLA2ß-/- macrophages, but none tested promoted M2 phenotype. These findings suggest that (a) lipids generated by iPLA2ß and subsequently oxidized by cyclooxygenase and 12-LO favor macrophage inflammatory M1 polarization, and (b) the absence of iPLA2ß promotes macrophage M2 polarization. Reducing macrophage iPLA2ß activity and thereby attenuating macrophage M1 polarization might cause a shift from an inflammatory to a recovery/repair milieu.


Assuntos
Polaridade Celular , Fosfolipases A2 do Grupo VI/imunologia , Inflamação/enzimologia , Macrófagos/citologia , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Feminino , Fosfolipases A2 do Grupo VI/genética , Humanos , Inflamação/genética , Inflamação/imunologia , Macrófagos/enzimologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 4 , NADPH Oxidases/genética , NADPH Oxidases/imunologia
15.
Mol Endocrinol ; 29(10): 1388-99, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26340406

RESUMO

Diabetes mellitus has rapidly become a 21st century epidemic with the promise to create vast economic and health burdens, if left unchecked. The 2 major forms of diabetes arise from unique causes, with outcomes being an absolute (type 1) or relative (type 2) loss of functional pancreatic islet ß-cell mass. Currently, patients rely on exogenous insulin and/or other pharmacologies that restore glucose homeostasis. Although these therapies have prolonged countless lives over the decades, the striking increases in both type 1 and type 2 diabetic diagnoses worldwide suggest a need for improved treatments. To this end, islet biologists are developing cell-based therapies by which a patient's lost insulin-producing ß-cell mass is replenished. Pancreatic or islet transplantation from cadaveric donors into diabetic patients has been successful, yet the functional islet demand far surpasses supply. Thus, the field has been striving toward transplantation of renewable in vitro-derived ß-cells that can restore euglycemia. Challenges have been numerous, but progress over the past decade has generated much excitement. In this review we will summarize recent findings that have placed us closer than ever to ß-cell replacement therapies. With the promise of cell-based diabetes therapies on the horizon, we will also provide an overview of cellular encapsulation technologies that will deliver critical protection of newly implanted cells.


Assuntos
Diferenciação Celular , Células Secretoras de Insulina/citologia , Animais , Células Imobilizadas/citologia , Humanos , Células-Tronco Pluripotentes/citologia , Transplante de Células-Tronco
16.
Diabetes ; 64(3): 937-46, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25288672

RESUMO

Macrophages are early islet-infiltrating cells seen in type 1 diabetes (T1D). While proinflammatory M1 macrophages induce T1D, M2 macrophages have been shown to delay this autoimmune disease in nonobese diabetic (NOD) mice, but the environmental cues that govern macrophage polarization and differentiation remain unresolved. We previously demonstrated the importance of reactive oxygen species (ROS) in T1D, as NOD mice deficient in NADPH oxidase (NOX)-derived superoxide (Ncf1(m1J)) were protected against T1D partly because of blunted Toll-like receptor-dependent macrophage responses. We provide evidence that NOX-derived ROS contribute to macrophage differentiation in T1D. During spontaneous diabetes progression, T1D-resistant NOD.Ncf1(m1J) islet-resident macrophages displayed a dampened M1 and increased M2 phenotype. The transfer of diabetogenic T cells into NOX-deficient NOD.Rag.Ncf1(m1J) recipients resulted in decreased TNF-α(+) and IL-1ß(+) islet-infiltrating M1 macrophages and a concomitant enhancement in arginase-1(+) M2 macrophages. Mechanistic analysis of superoxide-deficient bone marrow-derived macrophages revealed a marked diminution in a proinflammatory M1 phenotype due to decreased P-STAT1 (Y701) and interferon regulatory factor 5 compared with NOD mice. We have therefore defined a novel mechanistic link between NOX-derived ROS and macrophage phenotypes, and implicated superoxide as an important factor in macrophage differentiation. Thus, targeting macrophage redox status may represent a promising therapy in halting human T1D.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , NADPH Oxidases/metabolismo , Superóxidos/metabolismo , Animais , Feminino , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Mutantes , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/metabolismo
17.
Diabetes ; 64(2): 541-54, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25213337

RESUMO

Autoimmune ß-cell death leads to type 1 diabetes, and with findings that Ca(2+)-independent phospholipase A2ß (iPLA2ß) activation contributes to ß-cell death, we assessed the effects of iPLA2ß inhibition on diabetes development. Administration of FKGK18, a reversible iPLA2ß inhibitor, to NOD female mice significantly reduced diabetes incidence in association with 1) reduced insulitis, reflected by reductions in CD4(+) T cells and B cells; 2) improved glucose homeostasis; 3) higher circulating insulin; and 4) ß-cell preservation. Furthermore, FKGK18 inhibited production of tumor necrosis factor-α (TNF-α) from CD4(+) T cells and antibodies from B cells, suggesting modulation of immune cell responses by iPLA2ß-derived products. Consistent with this, 1) adoptive transfer of diabetes by CD4(+) T cells to immunodeficient and diabetes-resistant NOD.scid mice was mitigated by FKGK18 pretreatment and 2) TNF-α production from CD4(+) T cells was reduced by inhibitors of cyclooxygenase and 12-lipoxygenase, which metabolize arachidonic acid to generate bioactive inflammatory eicosanoids. However, adoptive transfer of diabetes was not prevented when mice were administered FKGK18-pretreated T cells or when FKGK18 administration was initiated with T-cell transfer. The present observations suggest that iPLA2ß-derived lipid signals modulate immune cell responses, raising the possibility that early inhibition of iPLA2ß may be beneficial in ameliorating autoimmune destruction of ß-cells and mitigating type 1 diabetes development.


Assuntos
Cálcio/metabolismo , Fosfolipases A2 do Grupo VI/metabolismo , Animais , Linfócitos B , Disponibilidade Biológica , Linfócitos T CD4-Positivos , Diabetes Mellitus Tipo 1 , Feminino , Regulação Enzimológica da Expressão Gênica , Glucose/metabolismo , Fosfolipases A2 do Grupo VI/genética , Homeostase , Insulina/metabolismo , Células Secretoras de Insulina , Cetonas/química , Cetonas/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Estrutura Molecular , Naftalenos/química , Naftalenos/farmacologia , Isoformas de Proteínas
18.
Adv Healthc Mater ; 4(5): 686-94, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25491369

RESUMO

Type 1 diabetes is an autoimmune-mediated disease resulting in the destruction of insulin-secreting pancreatic ß-cells. Transplantation of insulin-producing islets is a viable treatment to restore euglycemia in Type 1 diabetics; however, the clinical application remains limited due to the use of toxic immunosuppressive therapies to prevent immune-mediated rejection. A nanothin polymer material with dual antioxidant and immunosuppressive properties capable of modulating both innate and adaptive immune responses crucial for transplantation outcome is presented. Through the use of hollow microparticles (capsules) composed of hydrogen-bonded multilayers of natural polyphenol (tannic acid) with poly(N-vinylpyrrolidone) (TA/PVPON) and with poly(N-vinylcaprolactam) (TA/PVCL), proinflammatory reactive oxygen and nitrogen species are efficiently dissipated and the production of interferon (IFN)-γ and tumor necrosis factor (TNF)-α proinflammatory cytokines is attenuated by cognate antigen-stimulated autoreactive CD4+ T cells. These results provide evidence that TA-containing capsules are efficacious in immunomodulation and may provide physical transplant protection and prevent diabetogenic autoreactive T-cell responses. Future studies will determine if xeno- and allotransplantation with (TA/PVPON)- or (TA/PVCL)-coated pancreatic islets will decrease the risk of graft rejection due to attenuation of oxidative stress and IFN-γ, and restore euglycemia in Type 1 diabetics.


Assuntos
Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Taninos/farmacologia , Técnicas de Cultura de Tecidos/métodos , Animais , Citocinas/metabolismo , Feminino , Ligação de Hidrogênio , Imunomodulação/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Nanoestruturas/química , Fator de Transcrição STAT4/metabolismo , Linfócitos T/metabolismo , Taninos/química
19.
Cancer Res ; 73(22): 6609-20, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24085788

RESUMO

Chemoresistance due to heterogeneity of the tumor microenvironment (TME) hampers the long-term efficacy of first-line therapies for lung cancer. Current combination therapies for lung cancer provide only modest improvement in survival, implicating necessity for novel approaches that suppress malignant growth and stimulate long-term antitumor immunity. Oxidative stress in the TME promotes immunosuppression by tumor-infiltrating myeloid-derived suppressor cells (MDSC), which inhibit host protective antitumor immunity. Using a murine model of lung cancer, we demonstrate that a combination treatment with gemcitabine and a superoxide dismutase mimetic targets immunosuppressive MDSC in the TME and enhances the quantity and quality of both effector and memory CD8(+) T-cell responses. At the effector cell function level, the unique combination therapy targeting MDSC and redox signaling greatly enhanced cytolytic CD8(+) T-cell response and further decreased regulatory T cell infiltration. For long-term antitumor effects, this therapy altered the metabolism of memory cells with self-renewing phenotype and provided a preferential advantage for survival of memory subsets with long-term efficacy and persistence. Adoptive transfer of memory cells from this combination therapy prolonged survival of tumor-bearing recipients. Furthermore, the adoptively transferred memory cells responded to tumor rechallenge exerting long-term persistence. This approach offers a new paradigm to inhibit immunosuppression by direct targeting of MDSC function, to generate effector and persistent memory cells for tumor eradication, and to prevent lung cancer relapse.


Assuntos
Carcinoma Pulmonar de Lewis/imunologia , Tolerância Imunológica/imunologia , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células Mieloides/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Lewis/terapia , Terapia Combinada , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Feminino , Imunossupressores/uso terapêutico , Imunoterapia Adotiva , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Endogâmicos C57BL , Células Tumorais Cultivadas , Microambiente Tumoral/imunologia , Gencitabina
20.
Free Radic Biol Med ; 52(9): 2047-56, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22361747

RESUMO

In type 1 diabetes (T1D), reactive oxygen species (ROS) and proinflammatory cytokines produced by macrophages and other innate immune cells destroy pancreatic ß cells while promoting autoreactive T cell maturation. Superoxide-deficient nonobese diabetic mice (NOD.Ncf1(m1J)) are resistant to spontaneous diabetes, revealing the integral role of ROS signaling in T1D. Here, we evaluate the innate immune activation state of bone marrow-derived macrophages (BM-Mϕ) from NOD and NOD.Ncf1(m1J) mice after poly(I:C)-induced Toll-like receptor 3 (TLR3) signaling. We show that ROS synthesis is required for efficient activation of the NF-κB signaling pathway and concomitant expression of TLR3 and the cognate adaptor molecule, TRIF. Poly(I:C)-stimulated NOD.Ncf1(m1J) BM-Mϕ exhibited a 2- and 10-fold decrease in TNF-α and IFN-ß proinflammatory cytokine synthesis, respectively, in contrast to NOD BM-Mϕ. Optimal expression of IFN-α/ß is not solely dependent on superoxide synthesis, but requires p47(phox) to function in a NOX-independent manner to mediate type I interferon synthesis. Interestingly, MHC-II I-A(g7) expression necessary for CD4 T cell activation is increased 2-fold relative to NOD, implicating a role for superoxide in I-A(g7) downregulation. These findings suggest that defective innate immune-pattern-recognition receptor activation and subsequent decrease in TNF-α and IFN-ß proinflammatory cytokine synthesis necessary for autoreactive T cell maturation may contribute to the T1D protection observed in NOD.Ncf1(m1J) mice.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Imunidade Inata , Macrófagos/metabolismo , Transdução de Sinais/fisiologia , Superóxidos/metabolismo , Receptor 3 Toll-Like/fisiologia , Animais , Diabetes Mellitus Experimental/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos NOD , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA