Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520533

RESUMO

Immune checkpoint inhibitors (ICIs) exhibit remarkable antitumor activity and immune-related cardiotoxicity of unknown pathomechanism. The aim of the study was to investigate the ICI class-dependent cardiotoxicity in vitro and pembrolizumab's (Pem's) cardiotoxicity in vivo, seeking for translational prevention means. Cytotoxicity was investigated in primary cardiomyocytes and splenocytes, incubated with ipilimumab, Pem and avelumab. Pem's cross-reactivity was assessed by circular dichroism (CD) on biotechnologically produced human and murine PD-1 and in silico. C57BL6/J male mice received IgG4 or Pem for 2 and 5 weeks. Echocardiography, histology, and molecular analyses were performed. Coronary blood flow velocity mapping and cardiac magnetic resonance imaging were conducted at 2 weeks. Human EA.hy926 endothelial cells were incubated with Pem-conditioned media from human mononuclear cells, in presence and absence of statins and viability and molecular signaling were assessed. Atorvastatin (20 mg/kg, daily) was administered in vivo, as prophylaxis. Only Pem exerted immune-related cytotoxicity in vitro. Pem's cross-reactivity with the murine PD-1 was confirmed by CD and docking. In vivo, Pem initiated coronary endothelial and diastolic dysfunction at 2 weeks and systolic dysfunction at 5 weeks. At 2 weeks, Pem induced ICAM-1 and iNOS expression and intracardiac leukocyte infiltration. At 5 weeks, Pem exacerbated endothelial activation and triggered cardiac inflammation. Pem led to immune-related cytotoxicity in EA.hy926 cells, which was prevented by atorvastatin. Atorvastatin mitigated functional deficits, by inhibiting endothelial dysfunction in vivo. We established for the first time an in vivo model of Pem-induced cardiotoxicity. Coronary endothelial dysfunction precedes Pem-induced cardiotoxicity, whereas atorvastatin emerges as a novel prophylactic therapy.

2.
Micromachines (Basel) ; 14(8)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37630131

RESUMO

The presence of heavy metal ions in soil, air and water constitutes an important global environmental threat, as these ions accumulate throughout the food chain, contributing to the rise of chronic diseases, including, amongst others, cancer and kidney failure. To date, many efforts have been made for their detection, but there is still a need for the development of sensitive, low-cost, and portable devices able to conduct on-site detection of heavy metal ions. In this work, we combine microfluidic technology and electrochemical sensing in a plastic chip for the selective detection of heavy metal ions utilizing DNAzymes immobilized in between platinum nanoparticles (PtNPs), demonstrating a reliable portable solution for water pollution monitoring. For the realization of the microfluidic-based heavy metal ion detection device, a fast and easy-to-implement fabrication method based on the photolithography of dry photosensitive layers is proposed. As a proof of concept, we demonstrate the detection of Pb2+ ions using the prototype microfluidic device.

3.
Sensors (Basel) ; 21(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806753

RESUMO

In this paper, we present the development of a photonic biosensor device for cancer treatment monitoring as a complementary diagnostics tool. The proposed device combines multidisciplinary concepts from the photonic, nano-biochemical, micro-fluidic and reader/packaging platforms aiming to overcome limitations related to detection reliability, sensitivity, specificity, compactness and cost issues. The photonic sensor is based on an array of six asymmetric Mach Zender Interferometer (aMZI) waveguides on silicon nitride substrates and the sensing is performed by measuring the phase shift of the output signal, caused by the binding of the analyte on the functionalized aMZI surface. According to the morphological design of the waveguides, an improved sensitivity is achieved in comparison to the current technologies (<5000 nm/RIU). This platform is combined with a novel biofunctionalization methodology that involves material-selective surface chemistries and the high-resolution laser printing of biomaterials resulting in the development of an integrated photonics biosensor device that employs disposable microfluidics cartridges. The device is tested with cancer patient blood serum samples. The detection of periostin (POSTN) and transforming growth factor beta-induced protein (TGFBI), two circulating biomarkers overexpressed by cancer stem cells, is achieved in cancer patient serum with the use of the device.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Interferometria , Neoplasias/diagnóstico , Neoplasias/terapia , Óptica e Fotônica , Fótons , Reprodutibilidade dos Testes
4.
Molecules ; 25(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126549

RESUMO

Despite the fact that a considerable amount of effort has been invested in the development of biosensors for the detection of pesticides, there is still a lack of a simple and low-cost platform that can reliably and sensitively detect their presence in real samples. Herein, an enzyme-based biosensor for the determination of both carbamate and organophosphorus pesticides is presented that is based on acetylcholinesterase (AChE) immobilized on commercially available screen-printed carbon electrodes (SPEs) modified with carbon black (CB), as a means to enhance their conductivity. Most interestingly, two different methodologies to deposit the enzyme onto the sensor surfaces were followed; strikingly different results were obtained depending on the family of pesticides under investigation. Furthermore, and towards the uniform application of the functionalization layer onto the SPEs' surfaces, the laser induced forward transfer (LIFT) technique was employed in conjunction with CB functionalization, which allowed a considerable improvement of the sensor's performance. Under the optimized conditions, the fabricated sensors can effectively detect carbofuran in a linear range from 1.1 × 10-9 to 2.3 × 10-8 mol/L, with a limit of detection equal to 0.6 × 10-9 mol/L and chlorpyrifos in a linear range from 0.7 × 10-9 up to 1.4 × 10-8 mol/L and a limit of detection 0.4 × 10-9 mol/L in buffer. The developed biosensor was also interrogated with olive oil samples, and was able to detect both pesticides at concentrations below 10 ppb, which is the maximum residue limit permitted by the European Food Safety Authority.


Assuntos
Técnicas Biossensoriais/instrumentação , Carbamatos/análise , Custos e Análise de Custo , Limite de Detecção , Azeite de Oliva/química , Compostos Organofosforados/análise , Resíduos de Praguicidas/análise , Técnicas Biossensoriais/economia , Carbono/química , Eletrodos , Análise de Alimentos/instrumentação , Contaminação de Alimentos/análise , Propriedades de Superfície
5.
Pharmacol Ther ; 178: 1-17, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28322970

RESUMO

Considering both cancer's serious impact on public health and the side effects of cancer treatments, strategies towards targeted cancer therapy have lately gained considerable interest. Employment of gold nanoparticles (GNPs), in combination with ionizing and non-ionizing radiations, has been shown to improve the effect of radiation treatment significantly. GNPs, as high-Z particles, possess the ability to absorb ionizing radiation and enhance the deposited dose within the targeted tumors. Furthermore, they can convert non-ionizing radiation into heat, due to plasmon resonance, leading to hyperthermic damage to cancer cells. These observations, also supported by experimental evidence both in vitro and in vivo systems, reveal the capacity of GNPs to act as radiosensitizers for different types of radiation. In addition, they can be chemically modified to selectively target tumors, which renders them suitable for future cancer treatment therapies. Herein, a current review of the latest data on the physical properties of GNPs and their effects on GNP circulation time, biodistribution and clearance, as well as their interactions with plasma proteins and the immune system, is presented. Emphasis is also given with an in depth discussion on the underlying physical and biological mechanisms of radiosensitization. Furthermore, simulation data are provided on the use of GNPs in photothermal therapy upon non-ionizing laser irradiation treatment. Finally, the results obtained from the application of GNPs at clinical trials and pre-clinical experiments in vivo are reported.


Assuntos
Ouro/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Neoplasias/terapia , Radiossensibilizantes/uso terapêutico , Animais , Epigenômica , Humanos , Hipertermia Induzida , Sistema Imunitário/efeitos dos fármacos , Neoplasias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA