Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 953654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061808

RESUMO

The hypersensitive response is elicited by Agrobacterium infiltration of Nicotiana benthamiana, including the induction and accumulation of pathogenesis-related proteins, such as proteases. This includes the induction of the expression of several cysteine proteases from the C1 (papain-like cysteine protease) and C13 (legumain-like cysteine protease) families. This study demonstrates the role of cysteine proteases: NbVPE-1a, NbVPE-1b, and NbCysP6 in the proteolytic degradation of Nicotiana benthamiana (glycosylation mutant ΔXTFT)-produced anti-human immunodeficiency virus broadly neutralizing antibody, CAP256-VRC26.25. Three putative cysteine protease cleavage sites were identified in the fragment crystallizable region. We further demonstrate the transient coexpression of CAP256-VRC26.25 with CRISPR/Cas9-mediated genome editing vectors targeting the NbVPE-1a, NbVPE-1b, and NbCysP6 genes which resulted in a decrease in CAP256-VRC26.25 degradation. No differences in structural features were observed between the human embryonic kidney 293 (HEK293)-produced and ΔXTFT broadly neutralizing antibodies produced with and without the coexpression of genome-editing vectors. Furthermore, despite the presence of proteolytically degraded fragments of plant-produced CAP256-VRC26.25 without the coexpression of genome editing vectors, no influence on the in vitro functional activity was detected. Collectively, we demonstrate an innovative in planta strategy for improving the quality of the CAP256 antibodies through the transient expression of the CRISPR/Cas9 vectors.

2.
BMC Vet Res ; 15(1): 432, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796116

RESUMO

BACKGROUND: African horse sickness (AHS) is a severe arthropod-borne viral disease of equids, with a mortality rate of up to 95% in susceptible naïve horses. Due to safety concerns with the current live, attenuated AHS vaccine, alternate safe and effective vaccination strategies such as virus-like particles (VLPs) are being investigated. Transient plant-based expression systems are a rapid and highly scalable means of producing such African horse sickness virus (AHSV) VLPs for vaccine purposes. RESULTS: In this study, we demonstrated that transient co-expression of the four AHSV capsid proteins in agroinfiltrated Nicotiana benthamiana dXT/FT plants not only allowed for the assembly of homogenous AHSV-1 VLPs but also single, double and triple chimeric VLPs, where one capsid protein originated from one AHS serotype and at least one other capsid protein originated from another AHS serotype. Following optimisation of a large scale VLP purification procedure, the safety and immunogenicity of the plant-produced, triple chimeric AHSV-6 VLPs was confirmed in horses, the target species. CONCLUSIONS: We have successfully shown assembly of single and double chimeric AHSV-7 VLPs, as well as triple chimeric AHSV-6 VLPs, in Nicotiana benthamiana dXT/FT plants. Plant produced chimeric AHSV-6 VLPs were found to be safe for administration into 6 month old foals as well as capable of eliciting a weak neutralizing humoral immune response in these target animals against homologous AHSV virus.


Assuntos
Vírus da Doença Equina Africana/imunologia , Doença Equina Africana/prevenção & controle , Proteínas do Capsídeo/imunologia , Nicotiana/metabolismo , Vacinas Virais , Animais , Anticorpos Neutralizantes/imunologia , Proteínas do Capsídeo/metabolismo , Regulação da Expressão Gênica de Plantas , Cavalos , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Proteínas Recombinantes , Vacinas Atenuadas , Vacinas de Partículas Semelhantes a Vírus
3.
Vaccine ; 37(41): 6068-6075, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31471154

RESUMO

Bluetongue (BT) is a hemorrhagic non-contagious, biting midge-transmitted disease of wild and domestic ruminants that is caused by bluetongue virus (BTV). Annual vaccination plays a pivotal role in BT disease control in endemic regions. Due to safety concerns of the current BTV multivalent live attenuated vaccine (LAV), a safe efficacious new generation subunit vaccine such as a plant-produced BT virus-like particle (VLP) vaccine is imperative. Previously, homogenous BTV serotype 8 (BTV-8) VLPs were successfully produced in Nicotiana benthamiana plants and provided protective immunity in sheep. In this study, combinations of BTV capsid proteins from more than one serotype were expressed and assembled to form chimaeric BTV-3 and BTV-4 VLPs in N. benthamiana plants. The assembled homogenous BTV-8, as well as chimaeric BTV-3 and chimaeric BTV-4 VLP serotypes, were confirmed by SDS-PAGE, Transmission Electron microscopy (TEM) and protein confirmation using liquid chromatography-mass spectrometry (LC-MS/MS) based peptide sequencing. As VP2 is the major determinant eliciting protective immunity, the percentage coverage and number of unique VP2 peptides detected in assembled chimaeric BT VLPs were used as a guide to assemble the most appropriate chimaeric combinations. Both plant-produced chimaeric BTV-3 and BTV-4 VLPs were able to induce long-lasting serotype-specific neutralizing antibodies equivalent to the monovalent LAV controls. Antibody levels remained high to the end of the trial. Combinations of homogenous and chimaeric BT VLPs have great potential as a safe, effective multivalent vaccine with the ability to distinguish between vaccinated and infected individuals (DIVA) due to the absence of non-structural proteins.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vírus Bluetongue/imunologia , Bluetongue/prevenção & controle , Ovinos/imunologia , Vacinação/veterinária , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Nicotiana/virologia , Vacinas Atenuadas/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/imunologia
4.
PLoS One ; 13(12): e0209373, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30571707

RESUMO

Rabies is an ancient and neglected zoonotic disease caused by the rabies virus, a neurotropic RNA virus that belongs to the Rhabdoviridae family, genus Lyssavirus. It remains an important public health problem as there are cost and health concerns imposed by the current human post exposure prophylaxis therapy. The use of monoclonal antibodies (mAbs) is therefore an attractive alternative. Rabies mostly affects people that reside in resource-limited areas where there are occasional failures in the cold-chain. These environmental changes may upset the stability of the mAbs. This study focused on mAbs 62-71-3 and E559; their structures, responses to freeze/thaw (F/T) and exposure to reactive oxygen species were therefore studied with the aid of a wide range of biophysical and in silico techniques in order to elucidate their stability and identify aggregation prone regions. E559 was found to be less stable than 62-71-3. The complementarity determining regions (CDR) contributed the most to its instability, more specifically: peptides 99EIWD102 and 92ATSPYT97 found in CDR3, Trp33 found in CDR1 and the oxidised Met34. The constant region "158SWNSGALTGHTFPAVL175" was also flagged by the special aggregation propensity (SAP) tool and F/T experiments to be highly prone to aggregation. The E559 peptides "4LQESGSVL11 from the heavy chain and 4LTQSPSSL11 from the light chain, were also highly affected by F/T. These residues may serve as good candidates for mutation, in the aim to bring forward more stable therapeutic antibodies, thus paving a way to a more safe and efficacious antibody-based cocktail treatment against rabies.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Antivirais/química , Vírus da Raiva/imunologia , Raiva/terapia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/genética , Anticorpos Antivirais/metabolismo , Anticorpos Antivirais/uso terapêutico , Temperatura Baixa/efeitos adversos , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Simulação por Computador , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Humanos , Testes de Neutralização , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Engenharia de Proteínas/métodos , Proteólise , Raiva/imunologia , Raiva/virologia , Espécies Reativas de Oxigênio/química , Nicotiana/genética , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA