Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Foods Hum Nutr ; 79(1): 182-188, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38270742

RESUMO

Hypertension is a global health problem and leads to cardiovascular disease and renal injury. Solanum muricatum Aiton leaf extract, rich in flavonoids, is known for its antioxidant capacity. However, the effects of Solanum muricatum Aiton leaf extract on hypertension combined with inflammatory complications were unknown. This study aimed to investigate the impact of Solanum muricatum Aiton leaf extract on hypertension in vivo and in vitro. In vivo, Solanum muricatum Aiton leaf extract led to decrease high blood pressure, improve heart, aorta, and kidney pathology, and enhance the antioxidative activity in spontaneously hypertensive rats (SHR). Our study demonstrated Solanum muricatum Aiton leaf extract inhibited angiotensin-converting enzyme (ACE), epithelial sodium channel (ENaC), sodium glucose co-transporters-1 (SGLT-1), nuclear factor kappa B (NF-κB), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6). In vitro, Solanum muricatum Aiton leaf extract improved the angiotensin II-induced reactive oxygen species (ROS) and mitochondrial membrane depolarization in NRK-52E cells. Besides, Solanum muricatum Aiton leaf extract could also decrease the expressions of ENaC, SGLT-1, and NF-κB in angiotensin II-treated NRK-52E cells. Solanum muricatum Aiton leaf can be suggested as a novel antihypertensive agent ameliorating hypertension via ACE inhibition, inflammation reduction, and ROS. PLE is a novel anti-hypertensive agent to ameliorate hypertension and its complications, including inflammation.


Assuntos
Hipertensão , Solanum , Ratos , Animais , Solanum/metabolismo , Anti-Hipertensivos/farmacologia , Espécies Reativas de Oxigênio , NF-kappa B/metabolismo , Angiotensina II , Antioxidantes/farmacologia , Inflamação , Hipertensão/tratamento farmacológico , Extratos Vegetais/farmacologia , Ratos Endogâmicos SHR
2.
J Food Drug Anal ; 31(2): 254-277, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37335159

RESUMO

Pulmonary injury is defined as a progressive inflammation. Extensive pro-inflammatory cytokines are secreted from alveolus, associated with the production of reactive oxygen species (ROS) and apoptosis. The model of endotoxin lipopolysaccharide (LPS)-stimulated lung cells has been applied to mimic the pulmonary injury. Some antioxidants and anti-inflammatory compounds can be used as chemopreventive agents of pulmonary injury. Quercetin-3-glucuronide (Q3G) has been showed to exert antioxidant, anti-inflammatory, anti-cancer, anti-aging and anti-hypertension effects. The aim of the study is to examine the inhibitory potential of Q3G on pulmonary injury and inflammation in vitro and in vivo. Firstly, human lung fibroblasts MRC-5 cells pre-treated with LPS were demonstrated to cause survival loss and ROS generation, were recovered by Q3G. Q3G also exhibited the anti-inflammatory effects on the LPS-treated cells with a reduction in the activation of NLRP3 [nucleotide-binding and oligomerization domain (NOD)-like receptor protein 3] inflammasome, leading to pyroptosis. Also, Q3G showed the anti-apoptotic effect in the cells might be mediated via inhibition of mitochondrial apoptosis pathway. To further explore in vivo pulmonary-protective effect of Q3G, C57BL/6 mice were intranasally exposed to a combination of LPS and elastase (LPS/E) to perform the pulmonary injury model. The results revealed that Q3G ameliorated pulmonary function parameters and lung edema in the LPS/E-induced mice. Q3G also suppressed the LPS/E-stimulated inflammation, pyroptosis and apoptosis in the lungs. Taken together, this study suggested the lung-protective potential of Q3G via downregulation of inflammation, pyroptotic and apoptotic cell death, contributing to its chemopreventive activity of pulmonary injury.


Assuntos
Lesão Pulmonar , Camundongos , Humanos , Animais , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Inflamação , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia
3.
Food Chem Toxicol ; 172: 113581, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36572206

RESUMO

Chronic kidney disease (CKD) is a systemic inflammatory syndrome that includes tubulointerstitial inflammation. Lipopolysaccharide (LPS), the outer membrane of Gram-negative bacteria, can increase reactive oxygen species production (ROS) that triggers cell inflammation. Isovitexin (IV) is a flavone that has the potential for anticancer, antioxidant, and anti-inflammatory. This study aimed to hypothesize that IV inhibited LPS-induced renal injury in vitro and in vivo. In vitro study, IV prevented LPS-induced ROS production and increased cell viability on SV40-MES-13 cells. Additionally, IV ameliorated mitochondrial membrane potential, downregulated inflammation and pyroptosis factors on LPS treatment. We found that LPS treatment reduced the expression of autophagy, however, this effect was reversed by IV. In vivo study, the renal injury model in C57BL/6 mice cotreatment with IV was examined. In addition, IV decreased LPS-induced glomerular atrophy and reduced inflammation-related cytokines releases. Further showed that IV could significantly reduce LPS-induced inflammation and pyroptosis factors in mice. Under the immunostaining, increased fluorescence of LC3 autophagy-related protein was recovered by IV. In summary, IV ameliorated renal injury, inflammation and increased protected autophagy by anti-ROS production, anti-inflammation, and anti-pyroptosis. In the future, the safety of isovitexin as a novel perspective for CKD patients should be evaluated in further clinical studies.


Assuntos
Lipopolissacarídeos , Insuficiência Renal Crônica , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Rim/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Anti-Inflamatórios/farmacologia , Autofagia
4.
Plants (Basel) ; 11(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36501396

RESUMO

Cisplatin has been considered a chemotherapeutic drug for treating human tumors, and one of the noteworthy side effects of cisplatin is nephrotoxicity. Amelioration of cisplatin-induced nephrotoxicity is necessary. Lotus seedpod extract (LSE) mainly composed of quercetin-3-glucuronide has been revealed for antioxidant and anti-tumor effects. However, the effects of LSE on cisplatin-induced nephrotoxicity are still unknown. This study aims to explore the in vitro and in vivo protective effect and possible mechanism of LSE on cisplatin-induced nephrotoxicity. Results showed that co-treatment of LSE with cisplatin raised the viability of rat renal tubular epithelial NRK-52E cells and decreased oxidative stress and cell apoptosis when compared to the cells treated with cisplatin alone. The molecular mechanisms analyzed found that LSE could reduce the expressions of apoptotic factors, including Bax, Bad, t-Bid, and caspases. In the in vivo study, LSE improved the cisplatin-induced levels of serum markers of kidney function, glomerular atrophy, and the degree of apoptosis in the kidneys. This is the first study to display that LSE prevents cisplatin-induced nephrotoxicity by reducing oxidative stress and apoptosis. Thus, LSE could be a novel and natural chemoprotective agent for cisplatin chemotherapy in the future.

5.
Molecules ; 27(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807275

RESUMO

The aim is to investigate the effect of lotus (Nelumbo nucifera Gaertn.) seedpod extract (LSE) on acetaminophen (APAP)-induced hepatotoxicity. LSE is rich in polyphenols and has potent antioxidant capacity. APAP is a commonly used analgesic, while APAP overdose is the main reason for drug toxicity in the liver. Until now, there has been no in vitro test of LSE in drug-induced hepatotoxicity responses. LSEs were used to evaluate the effect on APAP-induced cytotoxicity, ROS level, apoptotic rate, and molecule mechanisms. The co-treatment of APAP and LSEs elevated the survival rate and decreased intracellular ROS levels on HepG2 cells. LSEs treatment could significantly reduce APAP-induced HepG2 apoptosis assessed by DAPI and Annexin V/PI. The further molecule mechanisms indicated that LSEs decreased Fas/FasL binding and reduced Bax and tBid to restore mitochondrial structure and subsequently suppress downstream apoptosis cascade activation. These declines in COX-2, NF-κB, and iNOS levels were observed in co-treatment APAP and LSEs, which indicated that LSEs could ameliorate APAP-induced inflammation. LSE protected APAP-induced apoptosis by preventing extrinsic, intrinsic, and JNK-mediated pathways. In addition, the restoration of mitochondria and inflammatory suppression in LSEs treatments indicated that LSEs could decrease oxidative stress induced by toxic APAP. Therefore, LSE could be a novel therapeutic option for an antidote against overdose of APAP.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Nelumbo , Acetaminofen/metabolismo , Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Humanos , Fígado , Nelumbo/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA