Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 303: 122401, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38006645

RESUMO

Peptide amphiphile (PA) nanofibers have been shown to target and deliver drugs when administered via an intravenous (IV) injection. Subcutaneous administration can broaden the applicability of PA nanofibers in the medical field. The ability of PA nanofibers to be absorbed into systemic circulation after subcutaneous administration was investigated. Four PA molecules with different amino acid sequences were designed to understand the effect of nanofiber cohesion and charge on uptake. Solution small-angle X-ray scattering confirmed nanostructure morphology and provided characteristic lengths for co-assemblies. Circular dichroism and solution wide-angle X-ray scattering confirmed PA secondary structure and molecular order. PAs were co-assembled in a 95 %:5 % molar ratio of unlabeled PA to fluorescently labeled PA. Male and female Sprague Dawley rats were injected in the nape of the neck with PA co-assemblies. In vivo normalized abdominal fluorescence was measured 1-72 h after injection. PA nanofibers with a negative charge and low internal order showed the highest amount of systemic absorption at 1, 6, and 24 h. At 24 h after injection, white blood cell count decreased and glucose was elevated. Glucose began to decrease at 48 h. These data indicate that PA nanofibers can be absorbed into the systemic circulation after subcutaneous injection.


Assuntos
Nanofibras , Ratos , Animais , Masculino , Feminino , Nanofibras/química , Ratos Sprague-Dawley , Peptídeos/química , Injeções Subcutâneas , Glucose
2.
ACS Nano ; 16(5): 7309-7322, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35504018

RESUMO

An abdominal aortic aneurysm (AAA) is a localized dilation of the aorta located in the abdomen that poses a severe risk of death when ruptured. The cause of AAA is not fully understood, but degradation of medial elastin due to elastolytic matrix metalloproteinases is a key step leading to aortic dilation. Current therapeutic interventions are limited to surgical repair to prevent catastrophic rupture. Here, we report the development of injectable supramolecular nanofibers using peptide amphiphile molecules designed to localize to AAA by targeting fragmented elastin, matrix metalloproteinase 2 (MMP-2), and membrane type 1 matrix metalloproteinase. We designed four targeting peptide sequences from X-ray crystallographic data and incorporated them into PA molecules via solid phase peptide synthesis. After coassembling targeted and diluent PAs at different molar ratios, we assessed their ability to form nanofibers using transmission electron microscopy and to localize to AAA in male and female Sprague-Dawley rats using light sheet fluorescence microscopy. We found that three formulations of the PA nanofibers were able to localize to AAA tissue, but the MMP-2 targeting PA substantially outperformed the other nanofibers. Additionally, we demonstrated that the MMP-2 targeting PA nanofibers had an optimal dose of 5 mg (∼12 mg/kg). Our results show that there was not a significant difference in targeting between male and female Sprague-Dawley rats. Given the ability of the MMP-2 targeting PA nanofiber to localize to AAA tissue, future studies will investigate potential diagnostic and targeted drug delivery applications for AAA.


Assuntos
Aneurisma da Aorta Abdominal , Nanofibras , Ratos , Animais , Masculino , Feminino , Metaloproteinase 2 da Matriz/metabolismo , Aneurisma da Aorta Abdominal/tratamento farmacológico , Elastina , Nanofibras/química , Ratos Sprague-Dawley , Peptídeos/metabolismo , Aorta Abdominal/metabolismo
3.
Biomaterials ; 274: 120862, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33975274

RESUMO

Smoke inhalation injury is associated with significant mortality and current therapies remain supportive. The purpose of our study was to identify proteins upregulated in the lung after smoke inhalation injury and develop peptide amphiphile nanofibers that target these proteins. We hypothesize that nanofibers targeted to angiotensin-converting enzyme or receptor for advanced glycation end products will localize to smoke-injured lungs. METHODS: Five targeting sequences were incorporated into peptide amphiphile monomers methodically to optimize nanofiber formation. Nanofiber formation was assessed by conventional transmission electron microscopy. Rats received 8 min of wood smoke. Levels of angiotensin-converting enzyme and receptor for advanced glycation end products were evaluated by immunofluorescence. Rats received the targeted nanofiber 23 h after injury via tail vein injection. Nanofiber localization was determined by fluorescence quantification. RESULTS: Peptide amphiphile purity (>95%) and nanofiber formation were confirmed. Target proteins were increased in smoke inhalation versus sham (p < 0.001). After smoke inhalation and injection of targeted nanofibers, we found a 10-fold increase in angiotensin-converting enzyme-targeted nanofiber localization to lung (p < 0.001) versus sham with minimal localization of non-targeted nanofiber (p < 0.001). CONCLUSIONS: We synthesized, characterized, and evaluated systemically delivered targeted nanofibers that localized to the site of smoke inhalation injury in vivo. Angiotensin-converting enzyme-targeted nanofibers serve as the foundation for developing a novel nanotherapeutic that treats smoke inhalation lung injury.


Assuntos
Nanofibras , Lesão por Inalação de Fumaça , Animais , Pulmão , Peptídeos , Ratos , Fumaça
4.
ACS Nano ; 14(6): 6649-6662, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32469498

RESUMO

Noncompressible torso hemorrhage accounts for a significant portion of preventable trauma deaths. We report here on the development of injectable, targeted supramolecular nanotherapeutics based on peptide amphiphile (PA) molecules that are designed to target tissue factor (TF) and, therefore, selectively localize to sites of injury to slow hemorrhage. Eight TF-targeting sequences were identified, synthesized into PA molecules, coassembled with nontargeted backbone PA at various weight percentages, and characterized via circular dichroism spectroscopy, transmission electron microscopy, and X-ray scattering. Following intravenous injection in a rat liver hemorrhage model, two of these PA nanofiber coassemblies exhibited the most specific localization to the site of injury compared to controls (p < 0.05), as quantified using immunofluorescence imaging of injured liver and uninjured organs. To determine if the nanofibers were targeting TF in vivo, a mouse saphenous vein laser injury model was performed and showed that TF-targeted nanofibers colocalized with fibrin, demonstrating increased levels of nanofiber at TF-rich sites. Thromboelastograms obtained using samples of heparinized rat whole blood containing TF demonstrated that no clots were formed in the absence of TF-targeted nanofibers. Lastly, both PA nanofiber coassemblies decreased blood loss in comparison to sham and backbone nanofiber controls by 35-59% (p < 0.05). These data demonstrate an optimal TF-targeted nanofiber that localizes selectively to sites of injury and TF exposure, and, interestingly, reduces blood loss. This research represents a promising initial phase in the development of a TF-targeted injectable therapeutic to reduce preventable deaths from hemorrhage.


Assuntos
Nanofibras , Animais , Hemorragia/tratamento farmacológico , Camundongos , Peptídeos , Ratos , Tromboplastina , Tronco
5.
J Surg Res ; 248: 182-190, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31711614

RESUMO

BACKGROUND: The aim of this review was to describe emerging therapies that could serve as a prehospital intervention to slow or stop noncompressible torso hemorrhage in the civilian and military settings. Hemorrhage accounts for 90% of potentially survivable military deaths and 30%-40% of trauma deaths. There is a great need to develop novel therapies to slow or stop noncompressible torso hemorrhage at the scene of the injury. METHODS: A comprehensive literature search was performed using PubMed (1966 to present) for therapies not approved by the Food and Drug Administration for noncompressible torso hemorrhage in the prehospital setting. Therapies were divided into compressive versus intravascular injectable therapies. Ease of administration, skill required to use the therapy, safety profile, stability, shelf-life, mortality benefit, and efficacy were reviewed. RESULTS: Multiple potential therapies for noncompressible torso hemorrhage are currently under active investigation. These include (1) tamponade therapies, such as gas insufflation and polyurethane foam injection; (2) freeze-dried blood products and alternatives such as lyophilized platelets; (3) nanoscale injectable therapies such as polyethylene glycol nanospheres, polyethylenimine nanoparticles, SynthoPlate, and tissue factor-targeted nanofibers; and (4) other injectable therapies such as polySTAT and adenosine, lidocaine, and magnesium. Although each of these therapies shows great promise at slowing or stopping hemorrhage in animal models of noncompressible hemorrhage, further research is needed to ensure safety and efficacy in humans. CONCLUSIONS: Multiple novel therapies are currently under active investigation to slow or stop noncompressible torso hemorrhage in the prehospital setting and show promising results.


Assuntos
Serviços Médicos de Emergência/métodos , Hemorragia/terapia , Técnicas Hemostáticas , Animais , Plaquetas , Humanos , Tronco
6.
Macromol Biosci ; 19(6): e1900066, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31066494

RESUMO

The rising prevalence of cardiovascular disease worldwide necessitates novel therapeutic approaches to manage atherosclerosis. Intravenously administered nanostructures are a promising noninvasive approach to deliver therapeutics that reduce plaque burden. The drug liver X receptor agonist GW3965 (LXR) can reduce atherosclerosis by promoting cholesterol efflux from plaque but causes liver toxicity when administered systemically at effective doses, thus preventing its clinical use. The ability of peptide amphiphile nanofibers containing apolipoprotein A1-derived targeting peptide 4F to serve as nanocarriers for LXR delivery (ApoA1-LXR PA) in vivo is investigated here. These nanostructures are found to successfully target atherosclerotic lesions in a mouse model within 24 h of injection. After 8 weeks of intravenous administration, the nanostructures significantly reduce plaque burden in both male and female mice to a similar extent as LXR alone in comparison to saline-treated controls. Furthermore, they do not cause increased liver toxicity in comparison to LXR treatments, which may be related to more controlled release by the nanostructure. These findings demonstrate the potential of supramolecular nanostructures as safe, effective drug nanocarriers to manage atherosclerosis.


Assuntos
Apolipoproteína A-I/farmacologia , Aterosclerose/tratamento farmacológico , Receptores X do Fígado/química , Peptídeos/farmacologia , Animais , Apolipoproteína A-I/química , Aterosclerose/genética , Benzoatos/efeitos adversos , Benzoatos/química , Benzilaminas/efeitos adversos , Benzilaminas/química , Modelos Animais de Doenças , Humanos , Receptores X do Fígado/genética , Receptores X do Fígado/uso terapêutico , Camundongos , Terapia de Alvo Molecular , Nanofibras/química , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Peptídeos/química , Tensoativos/química , Tensoativos/farmacologia
7.
Adv Healthc Mater ; 8(3): e1801545, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30620448

RESUMO

Nanomedicine is a promising, noninvasive approach to reduce atherosclerotic plaque burden. However, drug delivery is limited without the ability of nanocarriers to sense and respond to the diseased microenvironment. In this study, nanomaterials are developed from peptide amphiphiles (PAs) that respond to the increased levels of matrix metalloproteinases 2 and 9 (MMP2/9) or reactive oxygen species (ROS) found within the atherosclerotic niche. A pro-resolving therapeutic, Ac2-26, derived from annexin-A1 protein, is tethered to PAs using peptide linkages that cleave in response to MMP2/9 or ROS. By adjusting the molar ratios and processing conditions, the Ac2-26 PA can be co-assembled with a PA containing an apolipoprotein A1-mimetic peptide to create a targeted, therapeutic nanofiber (ApoA1-Ac226 PA). The ApoA1-Ac2-26 PAs demonstrate release of Ac2-26 within 24 h after treatment with MMP2 or ROS. The niche-responsive ApoA1-Ac2-26 PAs are cytocompatible and reduce macrophage activation from interferon gamma and lipopolysaccharide treatment, evidenced by decreased nitric oxide production. Interestingly, the linkage chemistry of ApoA1-Ac2-26 PAs significantly affects macrophage uptake and retention. Taken together, these findings demonstrate the potential of PAs to serve as an atheroma niche-responsive nanocarrier system to modulate the inflammatory microenvironment, with implications for atherosclerosis treatment.


Assuntos
Anexina A1 , Apolipoproteína A-I , Aterosclerose , Portadores de Fármacos , Imunoterapia , Nanofibras , Peptídeos , Placa Aterosclerótica , Animais , Anexina A1/química , Anexina A1/farmacologia , Apolipoproteína A-I/química , Apolipoproteína A-I/farmacologia , Aterosclerose/imunologia , Aterosclerose/patologia , Aterosclerose/terapia , Linhagem Celular , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Metaloproteinase 2 da Matriz/química , Metaloproteinase 2 da Matriz/farmacologia , Metaloproteinase 9 da Matriz/química , Metaloproteinase 9 da Matriz/farmacologia , Camundongos , Nanofibras/química , Nanofibras/uso terapêutico , Peptídeos/química , Peptídeos/farmacologia , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/patologia , Placa Aterosclerótica/terapia
8.
ACS Nano ; 10(1): 899-909, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26700464

RESUMO

Noncompressible torso hemorrhage is a leading cause of mortality in civilian and battlefield trauma. We sought to develop an i.v.-injectable, tissue factor (TF)-targeted nanotherapy to stop hemorrhage. Tissue factor was chosen as a target because it is only exposed to the intravascular space upon vessel disruption. Peptide amphiphile (PA) monomers that self-assemble into nanofibers were chosen as the delivery vehicle. Three TF-binding sequences were identified (EGR, RLM, and RTL), covalently incorporated into the PA backbone, and shown to self-assemble into nanofibers by cryo-transmission electron microscopy. Both the RLM and RTL peptides bound recombinant TF in vitro. All three TF-targeted nanofibers bound to the site of punch biopsy-induced liver hemorrhage in vivo, but only RTL nanofibers reduced blood loss versus sham (53% reduction, p < 0.05). Increasing the targeting ligand density of RTL nanofibers yielded qualitatively better binding to the site of injury and greater reductions in blood loss in vivo (p < 0.05). In fact, 100% RTL nanofiber reduced overall blood loss by 60% versus sham (p < 0.05). Evaluation of the biocompatibility of the RTL nanofiber revealed that it did not induce RBC hemolysis, did not induce neutrophil or macrophage inflammation at the site of liver injury, and 70% remained intact in plasma after 30 min. In summary, these studies demonstrate successful binding of peptides to TF in vitro and successful homing of a TF-targeted PA nanofiber to the site of hemorrhage with an associated decrease in blood loss in vivo. Thus, this therapeutic may potentially treat noncompressible hemorrhage.


Assuntos
Vasos Sanguíneos/efeitos dos fármacos , Hemorragia/tratamento farmacológico , Fígado/efeitos dos fármacos , Nanofibras/uso terapêutico , Peptídeos/farmacologia , Tromboplastina/metabolismo , Sequência de Aminoácidos , Animais , Vasos Sanguíneos/lesões , Fluorenos/química , Hemorragia/patologia , Injeções Intralesionais , Fígado/irrigação sanguínea , Fígado/lesões , Masculino , Dados de Sequência Molecular , Terapia de Alvo Molecular , Nanofibras/química , Peptídeos/síntese química , Peptídeos/metabolismo , Peptídeos/farmacocinética , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Tromboplastina/farmacocinética
9.
Nitric Oxide ; 35: 165-74, 2013 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-24149190

RESUMO

Exogenous administration of nitric oxide (NO) markedly decreases neointimal hyperplasia following arterial injury in several animal models. However, the effect of NO on neointimal hyperplasia in hypertension remains unknown. Here, we employ the spontaneously hypertensive rat (SHR) strain, inbred from Wistar Kyoto (WKY) rats, and the carotid artery balloon injury model to assess the effects of NO on neointimal hyperplasia development. 2weeks after arterial injury, we showed that both rat strains developed similar levels of neointimal hyperplasia, but local administration of NO was less effective at inhibiting neointimal hyperplasia in the SHR compared to WKY rats (58% vs. 79%, P<0.001). Interestingly, local administration of NO did not affect systemic blood pressure in either rat strain. Compared to WKY, the SHR displayed more proliferation in the media and adventitia following balloon injury, as measured by BrdU incorporation. The SHR also showed more inflammation in the adventitia after injury, as well as more vasa vasorum, than WKY rats. NO treatment reduced the vasa vasorum in the SHR but not WKY rats. Finally, while NO decreased both injury-induced proliferation and inflammation in the SHR, it did not return these parameters to levels seen in WKY rats. We conclude that NO is less effective at inhibiting neointimal hyperplasia in the SHR than WKY rats. This may be due to increased scavenging of NO in the SHR, leading to diminished bioavailability of NO. These data will help to develop novel NO-based therapies that will be equally effective in both normotensive and hypertensive patient populations.


Assuntos
Hiperplasia/tratamento farmacológico , Hipertensão/metabolismo , Neointima/tratamento farmacológico , Óxido Nítrico/uso terapêutico , Animais , Pressão Sanguínea , Bromodesoxiuridina/metabolismo , Artérias Carótidas/efeitos dos fármacos , Lesões das Artérias Carótidas/tratamento farmacológico , Guanilato Ciclase/análise , Guanilato Ciclase/efeitos dos fármacos , Macrófagos , Óxido Nítrico/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores Citoplasmáticos e Nucleares/análise , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Guanilil Ciclase Solúvel
10.
J Vasc Surg ; 58(1): 179-86, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23375434

RESUMO

OBJECTIVE: Isopeptidase T is a cysteine protease deubiquitinating enzyme that hydrolyzes unanchored polyubiquitin chains to free monoubiquitin. Nitric oxide (NO) decreases 26S proteasome activity in vascular smooth muscle cells (VSMCs) and inhibits neointimal hyperplasia in animal models. As NO can cause S-nitrosylation of active-site cysteines, we hypothesize that NO inhibits isopeptidase T activity through S-nitrosylation. Because accumulation of polyubiquitin chains inhibits the 26S proteasome, this may be one mechanism through which NO prevents neointimal hyperplasia. METHODS: To investigate our hypothesis, we examined the effect of NO on isopeptidase T activity, levels, and localization in VSMCs in vitro and in a rat carotid balloon injury model in vivo. RESULTS: NO inhibited recombinant isopeptidase T activity by 82.8% (t = 60 minutes, P < .001 vs control). Dithiothreitol and glutathione (5 mmol/L) both significantly reversed NO-mediated inhibition of isopeptidase T activity (P < .001). NO caused a time-dependent increase in S-nitrosylated isopeptidase T levels in VSMCs, which was reversible with dithiothreitol, indicating that isopeptidase T undergoes reversible S-nitrosylation on exposure to NO in vitro. Although NO did not affect isopeptidase T levels or subcellular localization in VSMCs in vitro, it decreased isopeptidase T levels and increased ubiquitinated proteins after balloon injury in vivo. CONCLUSIONS: Local administration of NO may prevent neointimal hyperplasia by inhibiting isopeptidase T levels and activity in the vasculature, thereby inhibiting the 26S proteasome in VSMCs. These data provide additional mechanistic insights into the ability of NO to prevent neointimal hyperplasia after vascular interventions.


Assuntos
Lesões das Artérias Carótidas/enzimologia , Endopeptidases/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Neointima , Óxido Nítrico/metabolismo , Lesões do Sistema Vascular/enzimologia , Animais , Lesões das Artérias Carótidas/patologia , Células Cultivadas , Modelos Animais de Doenças , Ditiotreitol/farmacologia , Regulação para Baixo , Glutationa/metabolismo , Humanos , Hiperplasia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Doadores de Óxido Nítrico/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacologia , Fatores de Tempo , Ubiquitinação , Lesões do Sistema Vascular/patologia
11.
Nitric Oxide ; 27(1): 50-8, 2012 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-22561112

RESUMO

The 11S proteasome activator (PA28) binds to the 20S proteasome and increases its ability to degrade small peptides. Expression of PA28 subunits (α, ß, γ) is induced by interferon-γ stimulation. Inflammation plays a role in the development of neointimal hyperplasia, and we have previously shown that nitric oxide (NO) reduces neointimal hyperplasia in animal models and 26S proteasome activity in rat aortic smooth muscle cells (RASMC). Here, we show that PA28 increased 26S proteasome activity in RASMC, as measured by a fluorogenic assay, and the NO donor S-nitroso N-acetylpenicillamine significantly inhibits this activation. This effect was abrogated by the reducing agents dithiothreitol and HgCl(2), suggesting that NO affects the activity of PA28 through S-nitrosylation. NO did not appear to affect PA28 levels or intracellular localization in RASMC in vitro. Three days following rat carotid artery balloon injury, levels of PA28α, ß and γ subunits were decreased compared to uninjured control arteries (n=3/group) in vivo. The NO donor proline NONOate further decreased PA28α, ß and γ levels by 1.9-, 2.3- and 3.4-fold, respectively, compared to uninjured control arteries. Fourteen days following arterial injury, levels of PA28α, ß and γ subunits were increased throughout the arterial wall compared to uninjured control arteries, but were greatest for the α and ß subunits. NO continued to decrease the levels of all three PA28 subunits throughout the arterial wall at this time point. Since the PA28 subunits are involved in the breakdown of peptides during inflammation, PA28 inhibition may be one mechanism by which NO inhibits neointimal hyperplasia.


Assuntos
Óxido Nítrico/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Análise de Variância , Animais , Aorta/citologia , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/metabolismo , Caspases/metabolismo , Células Cultivadas , Quimotripsina/metabolismo , Cisteína/análogos & derivados , Ditiotreitol , Cloreto de Mercúrio , Miócitos de Músculo Liso , Óxido Nítrico/metabolismo , Ratos , Ratos Sprague-Dawley , Substâncias Redutoras , S-Nitrosotióis , Tripsina/metabolismo
12.
J Surg Res ; 170(1): e169-77, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21737094

RESUMO

BACKGROUND: Proteins are targeted for degradation by the addition of a polyubiquitin chain. Chains of ubiquitin linked via lysine 48 (K48) are associated with protein degradation while chains linked via lysine 63 (K63) are associated with intracellular signaling. We have previously shown that nitric oxide (NO) inhibits neointimal hyperplasia in association with increasing the ubiquitination and degradation of UbcH10. The aim of this study is to characterize the effect of arterial injury and NO on K48- or K63-linked ubiquitination of cellular proteins. METHODS: The rat carotid artery balloon injury model was performed. Treatment groups included uninjured, injury alone, injury + proline NONOate (PROLI/NO), and PROLI/NO alone. Arteries were harvested at designated time points and sectioned for immunohistochemical analysis of K48- and K63-linked ubiquitination or homogenized for protein analysis. Vascular smooth muscle cells (VSMC) harvested from rat aortae were exposed to the NO donor diethylenetriamine NONOate (DETA/NO). Protein expression was determined by Western blot analysis, or immunoprecipitation and Western blot analysis. RESULTS: Arterial injury increased K48-linked ubiquitination in vivo. The addition of PROLI/NO following injury caused a further increase in K48-linked ubiquitination at 1 and 3 d, however, levels returned to that of injury alone by 2 wk. Interestingly, treatment with PROLI/NO alone increased K48-linked ubiquitination in vivo to levels similar to injury alone. There were lesser or opposite changes in K63-linked ubiquitination in all three treatment groups. DETA/NO increased K48-linked ubiquitination in VSMC in vitro but had minimal effects on K63-linked ubiquitination. Low doses of DETA/NO decreased K48-linked ubiquitination of cyclin A and B, while high doses of DETA/NO increased K48-linked ubiquitination of cyclin A and B. Minimal changes were seen in K63-linked ubiquitination of cyclin A and B in vitro. CONCLUSIONS: Arterial injury and NO increased K48-linked ubiquitination in vivo and in vitro. Remarkably, minimal changes were seen in K63-linked ubiquitination. These novel findings provide important insights into the vascular biology of arterial injury and suggest that one mechanism by which NO may prevent neointimal hyperplasia is through regulation of protein ubiquitination.


Assuntos
Lesões das Artérias Carótidas/metabolismo , Lisina/metabolismo , Doadores de Óxido Nítrico/farmacologia , Ubiquitinação , Animais , Células Cultivadas , Ciclina A/metabolismo , Ciclina B/metabolismo , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Ratos , Ratos Sprague-Dawley
13.
J Vasc Surg ; 51(5): 1248-59, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20223627

RESUMO

OBJECTIVE: Isopropylamine NONOate (IPA/NO) is a nitroxyl (HNO) donor at physiologic pH. HNO is a positive inotrope and vasodilator, but little is known about its effect on neointimal hyperplasia. The aims of this study are to determine the effect of IPA/NO on endothelial and vascular smooth muscle cells (VSMC) in vitro and to determine if IPA/NO inhibits neointimal hyperplasia in vivo. METHODS: VSMC were harvested from the abdominal aortas of male Sprague Dawley rats, and human umbilical vein endothelial cells were purchased from ATCC. In vitro, cellular proliferation was assessed by (3)H-thymidine incorporation, cell migration was assessed using the scrape assay, and cell death was assessed using Guava personal cell analysis (PCA). Cell cycle analysis was performed using propidium iodide staining and flow cytometry analysis. Protein expression was assessed using Western blot analysis. Phosphorylated proteins were assessed using immunoprecipitation and Western blot analysis. In vivo, the carotid artery injury model was performed on male Sprague Dawley rats treated with (n = 12) or without (n = 6) periadventitial IPA/NO (10 mg). Arteries harvested at 2 weeks were assessed for morphometrics using ImageJ. Inflammation was assessed using immunohistochemistry. Endothelialization was assessed by Evans blue staining of carotid arteries harvested 7 days after balloon injury from rats treated with (n = 6) or without (n = 3) periadventitial IPA/NO (10 mg). RESULTS: In vitro, 1000 micromol/L IPA/NO inhibited both VSMC (38.7 +/- 4.5% inhibition vs control, P = .003) and endothelial cell proliferation (54.0 +/- 2.9% inhibition vs control, P < or = 0.001) without inducing cell death or inhibiting migration. In VSMC, this inhibition was associated with an S-phase cell cycle arrest and increased expression of cyclin A, cyclin D1, and the cyclin-dependent kinase inhibitor p21. No change was noted in the phosphorylation status of cdk2, cdk4, or cdk6 by IPA/NO. In rodents subjected to the carotid artery balloon injury model, IPA/NO caused significant reductions in neointimal area (298 +/- 20 vs 422 +/- 30, P < or = .001) and medial area (311 +/- 14 vs 449 +/- 16, P < or = .001) compared with injury alone, and reduced macrophage infiltration to 1.7 +/- 0.8 from 16.1 +/- 3.5 cells per high power field (P < or = .001). IPA/NO also prevented re-endothelialization compared with injury alone (55.9 +/- 0.5% nonendothelialized vs 21 +/- 4.4%, respectively, P = .001). Lastly, a 50% mortality rate was observed in the IPA/NO-treated groups. CONCLUSIONS: In summary, while IPA/NO modestly inhibited neointimal hyperplasia by inhibiting VSMC proliferation and macrophage infiltration, it also inhibited endothelial cell proliferation and induced significant mortality in our animal model. Since HNO is being investigated as a treatment for congestive heart failure, our results raise some concerns about the use of IPA/NO in the vasculature and suggest that further studies be conducted on the safety of HNO donors in the cardiovascular system.


Assuntos
Lesões das Artérias Carótidas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Hidrazinas/metabolismo , Músculo Liso Vascular/metabolismo , Túnica Íntima/metabolismo , Túnica Íntima/patologia , Animais , Aorta Abdominal/citologia , Aorta Abdominal/efeitos dos fármacos , Western Blotting , Lesões das Artérias Carótidas/complicações , Lesões das Artérias Carótidas/patologia , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Humanos , Hidrazinas/administração & dosagem , Hiperplasia/etiologia , Hiperplasia/metabolismo , Hiperplasia/patologia , Hiperplasia/prevenção & controle , Imuno-Histoquímica , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Valores de Referência , Túnica Íntima/efeitos dos fármacos , Veias Umbilicais/citologia , Veias Umbilicais/efeitos dos fármacos
14.
Vasc Endovascular Surg ; 43(2): 121-31, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18799500

RESUMO

Prosthetic devices that come into contact with blood ultimately fail secondary to thrombus formation. This limits the utility of a variety of materials used to surgically treat cardiovascular disease, including vascular grafts and stents, as well as sensors and catheters placed within the circulatory system. Moreover, systemic anticoagulation that is used to prevent malfunction of these devices has potential for serious complications. It is known that nitric oxide (NO) produced via the endothelium imparts thromboresistant properties to native blood vessels. Thus, if NO were delivered locally to the site of the prosthetic material, it has the potential to halt thrombus formation while limiting life-threatening side effects. This review serves to examine the variety of NO-releasing materials that have been created with the two different classes of NO donors, the diazeniumdiolates and S-nitrosothiols, and the clinical applications of these prosthetics for potential future use.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Implante de Prótese Vascular/instrumentação , Prótese Vascular , Materiais Revestidos Biocompatíveis , Stents Farmacológicos , Doadores de Óxido Nítrico/uso terapêutico , Trombose/prevenção & controle , Animais , Anticoagulantes/uso terapêutico , Compostos Azo/uso terapêutico , Implante de Prótese Vascular/efeitos adversos , Quimioterapia Combinada , Humanos , Doadores de Óxido Nítrico/administração & dosagem , Desenho de Prótese , Falha de Prótese , S-Nitrosotióis/uso terapêutico , Trombose/sangue , Trombose/etiologia
15.
J Vasc Surg ; 47(1): 173-82, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18178471

RESUMO

OBJECTIVE: Nitric oxide (NO) has been shown to inhibit neointimal hyperplasia after arterial interventions in several animal models. To date, however, NO-based therapies have not been used in the clinical arena. Our objective was to combine nanofiber delivery vehicles with NO chemistry to create a novel, more potent NO-releasing therapy that can be used clinically. Thus, the aim of this study was to evaluate the perivascular application of spontaneously self-assembling NO-releasing nanofiber gels. Our hypothesis was that this application would prevent neointimal hyperplasia. METHODS: Gels consisted of a peptide amphiphile, heparin, and a diazeniumdiolate NO donor (1-[N-(3-Aminopropyl)-N-(3-ammoniopropyl)]diazen-1-ium-1,2-diolate [DPTA/NO] or disodium 1-[(2-Carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate [PROLI/NO]). Nitric oxide release from the gels was evaluated by the Griess reaction, and scanning electron microscopy confirmed nanofiber formation. Vascular smooth muscle cell (VSMC) proliferation and cell death were assessed in vitro by (3)H-thymidine incorporation and Personal Cell Analysis (PCA) system (Guava Technologies, Hayward, Calif). For the in vivo work, gels were modified by reducing the free-water content. Neointimal hyperplasia after periadventitial gel application was evaluated using the rat carotid artery injury model at 14 days (n = 6 per group). Inflammation and proliferation were examined in vivo with immunofluorescent staining against CD45, ED1, and Ki67 at 3 days (n = 2 per group), and graded by blinded observers. Endothelialization was assessed by Evans blue injection at 7 days (n = 3 per group). RESULTS: Both DPTA/NO and PROLI/NO, combined with the peptide amphiphile and heparin, formed nanofiber gels and released NO for 4 days. In vitro, DPTA/NO inhibited VSMC proliferation and induced cell death to a greater extent than PROLI/NO. However, the DPTA/NO nanofiber gel only reduced neointimal hyperplasia by 45% (intima/media [I/M] area ratio, 0.45 +/- 0.07), whereas the PROLI/NO nanofiber gel reduced neointimal hyperplasia by 77% (I/M area ratio, 0.19 +/- 0.03, P < .05) vs control (injury alone I/M area ratio, 0.83 +/- 0.07; P < .05). Both DPTA/NO and PROLI/NO nanofiber gels significantly inhibited proliferation in vivo (1.06 +/- 0.30 and 0.19 +/- 0.11 vs injury alone, 2.02 +/- 0.20, P < .05), yet had minimal effect on apoptosis. Only the PROLI/NO nanofiber gel inhibited inflammation (monocytes and leukocytes). Both NO-releasing nanofiber gels stimulated re-endothelialization. CONCLUSIONS: Perivascular application of NO-releasing self-assembling nanofiber gels is an effective and simple therapy to prevent neointimal hyperplasia after arterial injury. Our study demonstrates that the PROLI/NO nanofiber gel most effectively prevented neointimal hyperplasia and resulted in less inflammation than the DPTA/NO nanofiber gel. This therapy has great clinical potential to prevent neointimal hyperplasia after open vascular interventions in patients.


Assuntos
Artérias Carótidas/efeitos dos fármacos , Lesões das Artérias Carótidas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Nanotecnologia/métodos , Doadores de Óxido Nítrico/farmacologia , Túnica Íntima/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Morte Celular/efeitos dos fármacos , Células Cultivadas , Preparações de Ação Retardada , Modelos Animais de Doenças , Portadores de Fármacos , Composição de Medicamentos , Endotélio Vascular/efeitos dos fármacos , Géis , Hiperplasia , Masculino , Modelos Moleculares , Estrutura Molecular , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/uso terapêutico , Prolina/análogos & derivados , Prolina/farmacologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Túnica Íntima/metabolismo , Túnica Íntima/patologia
16.
J Vasc Surg ; 45 Suppl A: A64-73, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17544026

RESUMO

Since its discovery, nitric oxide (NO) has emerged as a biologically important molecule and was even named Molecule of the Year by Science magazine in 1992. Specific to our interests, NO has been implicated in the regulation of vascular pathology. This review begins with a summary of the molecular biology of NO, from its discovery to the mechanisms of endogenous production. Next, we turn our attention to describing the arterial injury response of neointimal hyperplasia, and we review the role of NO in the pathophysiology of neointimal hyperplasia. Finally, we review the literature regarding NO-based therapies. This includes the development of inhalational-based NO therapies, systemically administered L-arginine and NO donors, NO synthase gene therapy, locally applied NO donors, and NO-releasing prosthetic materials. By reviewing the current literature, we emphasize the tremendous clinical potential that NO-based therapies can have on the development of neointimal hyperplasia.


Assuntos
Artérias/metabolismo , Fármacos Cardiovasculares/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Túnica Íntima/metabolismo , Administração por Inalação , Animais , Apoptose , Arginina/farmacologia , Arginina/uso terapêutico , Artérias/enzimologia , Artérias/lesões , Artérias/patologia , Artérias/fisiopatologia , Plaquetas/metabolismo , Fármacos Cardiovasculares/administração & dosagem , Fármacos Cardiovasculares/uso terapêutico , Proliferação de Células , Quimiotaxia de Leucócito , Portadores de Fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Matriz Extracelular/metabolismo , Terapia Genética/métodos , Humanos , Hiperplasia/metabolismo , Hiperplasia/terapia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Óxido Nítrico/administração & dosagem , Óxido Nítrico/uso terapêutico , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/uso terapêutico , Óxido Nítrico Sintase/genética , Adesividade Plaquetária , Agregação Plaquetária , Túnica Íntima/enzimologia , Túnica Íntima/lesões , Túnica Íntima/patologia , Túnica Íntima/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA