RESUMO
Selective androgen receptor modulators (SARMs) are an emerging class of therapeutics targeted to cachexia, sarcopenia, and hypogonadism treatment. LGD-4033 is a SARM which has been included on the Prohibited List annually released by the World Anti-Doping Agency (WADA). The aim of the present work was the investigation of the metabolism of LGD-4033 in a human excretion study after administration of an LGD-4033 supplement, the determination of the metabolites' excretion profiles with special interest in the determination of its long-term metabolites, and the comparison of the excretion time of the phase I and phase II metabolites. The results were also compared to those derived from previous LGD-4033 studies concerning both in vitro and in vivo experiments. Supplement containing LGD-4033 was administered to one human male volunteer and urine samples were collected up to almost 21 days. Analysis of the hydrolyzed (with ß-glucuronidase) as well as of the non-hydrolyzed samples was performed using liquid chromatography-high resolution mass spectrometry (LC-HRMS) in negative ionization mode and revealed that, in both cases, the two isomers of the dihydroxylated metabolite (M5) were preferred target metabolites. The gluco-conjugated parent LGD-4033 and its gluco-conjugated metabolites M1 and M2 can be also considered as useful target analytes in non-hydrolyzed samples. The study also presents two trihydroxylated metabolites (M6) identified for the first time in human urine; one of them was recently reported in an LGD-4033 metabolism study in horse urine and plasma.
Assuntos
Androgênios/metabolismo , Androgênios/urina , Nitrilas/metabolismo , Nitrilas/urina , Pirrolidinas/metabolismo , Pirrolidinas/urina , Androgênios/administração & dosagem , Androgênios/análise , Cromatografia Líquida/métodos , Suplementos Nutricionais/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Hidrólise , Masculino , Espectrometria de Massas/métodos , Nitrilas/administração & dosagem , Nitrilas/análise , Pirrolidinas/administração & dosagem , Pirrolidinas/análise , Detecção do Abuso de Substâncias/métodosRESUMO
Urine collection containers used in the doping control collection procedure do not provide a protective environment for urine, against degradation by microorganisms and proteolytic enzymes. An in-house chemical stabilization mixture was developed to tackle urine degradation problems encountered in human sport samples, in cases of microbial contamination or proteolytic activity. The mixture consists of antimicrobial substances and protease inhibitors for the simultaneous inactivation of a wide range of proteolytic enzymes. It has already been tested in lab-scale, as part of World Anti-Doping Agency's (WADA) funded research project, in terms of efficiency against microbial and proteolytic activity. The present work, funded also by WADA, is a follow-up study on the improvement of chemical stabilization mixture composition, application mode and limitation of interferences, using pilot urine collection containers, spray-coated in their internal surface with the chemical stabilization mixture. Urine in plastic stabilized collection containers have been gone through various incubation cycles to test for stabilization efficiency and analytical matrix interferences by three WADA accredited Laboratories (Athens, Ghent, and Rome). The spray-coated chemical stabilization mixture was tested against microorganism elimination and steroid glucuronide degradation, as well as enzymatic breakdown of proteins, such as intact hCG, recombinant erythropoietin and small peptides (GHRPs, ipamorelin), induced by proteolytic enzymes. Potential analytical interferences, observed in the presence of spray-coated chemical stabilization mixture, were recorded using routine screening procedures. The results of the current study support the application of the spray-coated plastic urine container, in the doping control collection procedure. Copyright © 2016 John Wiley & Sons, Ltd.
Assuntos
Manejo de Espécimes/métodos , Detecção do Abuso de Substâncias/métodos , Urinálise/métodos , Urina/química , Gonadotropina Coriônica/urina , DNA/urina , Dopagem Esportivo , Eritropoetina/urina , Seguimentos , Humanos , Peptídeos/urina , Projetos Piloto , Proteólise , Proteínas Recombinantes/urina , Manejo de Espécimes/instrumentação , Esteroides/urina , Detecção do Abuso de Substâncias/instrumentação , Urinálise/instrumentação , Urina/microbiologiaRESUMO
The presence of proteolytic enzymes in urine samples, coming from exogenous or endogenous sources, enhances the cleavage of human chorionic gonadotropin (hCG). Moreover, elevated temperatures occurring occasionally during the delayed transportation of sport urine samples, favor the nicking of the hCG molecule. The aim of the current study, funded by the World Anti-Doping Agency (WADA), was the application of a stabilization mixture in athletes' urine samples to chemically inactivate proteolytic enzymes coming from exogenous or endogenous sources so as to prevent the degradation of hCG. The stabilization mixture applied, already tested for the stabilization of endogenous steroids and recombinant erythropoietin (rEPO), was a combination of antibiotics, antimycotic substances, and protease inhibitors. Incubation experiments were conducted in the presence or absence of the stabilization mixture in urine aliquots spiked with six proteases (first series of experiments) and one microorganism associated with urinary tract infections (UTI) (second series of experiments). Intact hCG levels were evaluated by using the EIAgen Total hCG kit. In the first series of experiments, hCG levels were reduced in the untreated aliquots following incubation at 37 degrees C. The addition of the chemical stabilization mixture prevented degradation of hCG induced by four of the proteases applied. In the second series of experiments, no significant difference was found in urine inoculated with E. coli, between aliquots treated with chemical mixture and the untreated aliquots. The addition of the proposed chemical stabilization mixture improves the quality of athletes' urine samples against possible deterioration due to high temperatures or attempts of proteolytic manipulation.