Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Imaging Biol ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093483

RESUMO

PURPOSE: To ensure comparable PET/CT image quality between or within centres, clinical inter-system performance comparisons following European Association of Nuclear Medicine Research Ltd. (EARL) guidelines is required. In this work the performance of the long axial field-of-view Biograph Vision Quadra is compared to its predecessor, the short axial field-of-view Biograph Vision. PROCEDURES: To this aim, patients with suspected tumour lesions received a single weight-based (3 MBq/kg) 2-deoxy-2-[18F]fluoro-D-glucose injection and underwent routine clinical ( ∼ 15 min) scans on the Vision and 3-min scans on the Quadra in listmode in balanced order. Image quality (IQ), image noise (IN), and tumour demarcation (TD) were assessed visually by four nuclear medicine physicians using a 5-point Likert scale and semiquantitative analysis was performed using standardised uptake values (SUVs). Inter-reader agreement was tested using Wilcoxon's signed rank test and the SUVs were statistically compared using a paired t-test. RESULTS: Twenty patients (mean age, 60 years ± 8.8 [standard deviation], 16 male) were enrolled. Inter-reader agreement ranged from good to very good for IQ and IN (0.62 ≤ W ≤ 0.81), and fair for TD (0.29 ≤ W ≤ 0.39). Furthermore, a significant difference was found for TD (p = 0.015) between the systems, showing improved TD for the Quadra. CONCLUSION: This study demonstrates that the Quadra can be used in routine clinical practice with multiple PET/CT systems or in multicentre studies. This system provides comparable diagnostic image quality and semiquantitative accuracy, improved TD, and has the advantage of shorter scan durations.

2.
Clin Imaging ; 108: 110116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460254

RESUMO

OBJECTIVE: To determine the frequency, nature, and downstream healthcare costs of new incidental findings that are found on whole-body FDG-PET/CT in patients with a non-FDG-avid pulmonary lesion ≥10 mm that was incidentally found on previous imaging. MATERIALS AND METHODS: This retrospective study included a consecutive series of patients who underwent whole-body FDG-PET/CT because of an incidentally found pulmonary lesion ≥10 mm. RESULTS: Seventy patients were included, of whom 23 (32.9 %) had an incidentally found pulmonary lesion that proved to be non-FDG-avid. In 12 of these 23 cases (52.2 %) at least one new incidental finding was discovered on FDG-PET/CT. The total number of new incidental findings was 21, of which 7 turned out to be benign, 1 proved to be malignant (incurable metastasized cancer), and 13 whose nature remained unclear. One patient sustained permanent neurologic impairment of the left leg due to iatrogenic nerve damage during laparotomy for an incidental finding which turned out to be benign. The total costs of all additional investigations due to the detection of new incidental findings amounted to €9903.17, translating to an average of €141.47 per whole-body FDG-PET/CT scan performed for the evaluation of an incidentally found pulmonary lesion. CONCLUSION: In many patients in whom whole-body FDG-PET/CT was performed to evaluate an incidentally found pulmonary lesion that turned out to be non-FDG-avid and therefore very likely benign, FDG-PET/CT detected new incidental findings in our preliminary study. Whether the detection of these new incidental findings is cost-effective or not, requires further research with larger sample sizes.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Achados Incidentais , Estudos Retrospectivos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos
3.
Cancers (Basel) ; 15(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958347

RESUMO

The latest technical development in the field of positron emission tomography/computed tomography (PET/CT) imaging has been the extension of the PET axial field-of-view. As a result of the increased number of detectors, the long axial field-of-view (LAFOV) PET systems are not only characterized by a larger anatomical coverage but also by a substantially improved sensitivity, compared with conventional short axial field-of-view PET systems. In clinical practice, this innovation has led to the following optimization: (1) improved overall image quality, (2) decreased duration of PET examinations, (3) decreased amount of radioactivity administered to the patient, or (4) a combination of any of the above. In this review, novel applications of LAFOV PET in oncology are highlighted and future directions are discussed.

4.
J Nucl Med ; 64(11): 1815-1820, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37536740

RESUMO

The purpose of this study was to quantify any differences between the SUVs of 89Zr immuno-PET scans obtained using a PET/CT system with a long axial field of view (LAFOV; Biograph Vision Quadra) compared to a PET/CT system with a short axial field of view (SAFOV; Biograph Vision) and to evaluate how LAFOV PET scan duration affects image noise and SUV metrics. Methods: Five metastatic breast cancer patients were scanned consecutively on SAFOV and LAFOV PET/CT scanners. Four additional patients were scanned using only LAFOV PET/CT. Scans on both systems lasted approximately 30 min and were acquired 4 d after injection of 37 MBq of 89Zr-trastuzumab. LAFOV list-mode data were reprocessed to obtain images acquired using shorter scan durations (15, 10, 7.5, 5, and 3 min). Volumes of interest were placed in healthy tissues, and tumors were segmented semiautomatically to compare coefficients of variation and to perform Bland-Altman analysis on SUV metrics (SUVmax, SUVpeak, and SUVmean). Results: Using 30-min images, 2 commonly used lesion SUV metrics were higher for SAFOV than for LAFOV PET (SUVmax, 16.2% ± 13.4%, and SUVpeak, 10.1% ± 7.2%), whereas the SUVmean of healthy tissues showed minimal differences (0.7% ± 5.8%). Coefficients of variation in the liver derived from 30-min SAFOV PET were between those of 3- and 5-min LAFOV PET. The smallest SUVmax and SUVpeak differences between SAFOV and LAFOV were found for 3-min LAFOV PET. Conclusion: LAFOV 89Zr immuno-PET showed a lower SUVmax and SUVpeak than SAFOV because of lower image noise. LAFOV PET scan duration may be reduced at the expense of increasing image noise and bias in SUV metrics. Nevertheless, SUVpeak showed only minimal bias when reducing scan duration from 30 to 10 min.


Assuntos
Neoplasias da Mama , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Feminino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Trastuzumab , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Mama/diagnóstico por imagem
5.
Cancer Imaging ; 22(1): 69, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36527149

RESUMO

This review describes the main benefits of using long axial field of view (LAFOV) PET in clinical applications. As LAFOV PET is the latest development in PET instrumentation, many studies are ongoing that explore the potentials of these systems, which are characterized by ultra-high sensitivity. This review not only provides an overview of the published clinical applications using LAFOV PET so far, but also provides insight in clinical applications that are currently under investigation. Apart from the straightforward reduction in acquisition times or administered amount of radiotracer, LAFOV PET also allows for other clinical applications that to date were mostly limited to research, e.g., dual tracer imaging, whole body dynamic PET imaging, omission of CT in serial PET acquisition for repeat imaging, and studying molecular interactions between organ systems. It is expected that this generation of PET systems will significantly advance the field of nuclear medicine and molecular imaging.


Assuntos
Elétrons , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos
6.
EJNMMI Phys ; 9(1): 74, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36308568

RESUMO

BACKGROUND: Excellent performance characteristics of the Vision Quadra PET/CT, e.g. a substantial increase in sensitivity, allow for precise measurements of image-derived input functions (IDIF) and tissue time activity curves. Previously we have proposed a method for a reduced 30 min (as opposed to 60 min) whole body 18F-FDG Patlak PET imaging procedure using a previously published population-averaged input function (PIF) scaled to IDIF values at 30-60 min post-injection (p.i.). The aim of the present study was to apply this method using the Vision Quadra PET/CT, including the use of a PIF to allow for shortened scan durations. METHODS: Twelve patients with suspected lung malignancy were included and received a weight-based injection of 18F-FDG. Patients underwent a 65-min dynamic PET acquisition which were reconstructed using European Association of Nuclear Medicine Research Ltd. (EARL) standards 2 reconstruction settings. A volume of interest (VOI) was placed in the ascending aorta (AA) to obtain the IDIF. An external PIF was scaled to IDIF values at 30-60, 40-60, and 50-60 min p.i., respectively, and parametric 18F-FDG influx rate constant (Ki) images were generated using a t* of 30, 40 or 50 min, respectively. Herein, tumour lesions as well as healthy tissues, i.e. liver, muscle tissue, spleen and grey matter, were segmented. RESULTS: Good agreement between the IDIF and corresponding PIF scaled to 30-60 min p.i. and 40-60 min p.i. was obtained with 7.38% deviation in Ki. Bland-Altman plots showed excellent agreement in Ki obtained using the PIF scaled to the IDIF at 30-60 min p.i. and at 40-60 min p.i. as all data points were within the limits of agreement (LOA) (- 0.004-0.002, bias: - 0.001); for the 50-60 min p.i. Ki, all except one data point fell in between the LOA (- 0.021-0.012, bias: - 0.005). CONCLUSIONS: Parametric whole body 18F-FDG Patlak Ki images can be generated non-invasively on a Vision Quadra PET/CT system. In addition, using a scaled PIF allows for a substantial (factor 2 to 3) reduction in scan time without substantial loss of accuracy (7.38% bias) and precision (image quality and noise interference).

7.
Eur Radiol ; 32(10): 7237-7247, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36006428

RESUMO

OBJECTIVES: Relapse occurs in ~20% of patients with classical Hodgkin lymphoma (cHL) despite treatment adaption based on 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography response. The objective was to evaluate pre-treatment FDG PET/CT-derived machine learning (ML) models for predicting outcome in patients with cHL. METHODS: All cHL patients undergoing pre-treatment PET/CT at our institution between 2008 and 2018 were retrospectively identified. A 1.5 × mean liver standardised uptake value (SUV) and a fixed 4.0 SUV threshold were used to segment PET/CT data. Feature extraction was performed using PyRadiomics with ComBat harmonisation. Training (80%) and test (20%) cohorts stratified around 2-year event-free survival (EFS), age, sex, ethnicity and disease stage were defined. Seven ML models were trained and hyperparameters tuned using stratified 5-fold cross-validation. Area under the curve (AUC) from receiver operator characteristic analysis was used to assess performance. RESULTS: A total of 289 patients (153 males), median age 36 (range 16-88 years), were included. There was no significant difference between training (n = 231) and test cohorts (n = 58) (p value > 0.05). A ridge regression model using a 1.5 × mean liver SUV segmentation had the highest performance, with mean training, validation and test AUCs of 0.82 ± 0.002, 0.79 ± 0.01 and 0.81 ± 0.12. However, there was no significant difference between a logistic model derived from metabolic tumour volume and clinical features or the highest performing radiomic model. CONCLUSIONS: Outcome prediction using pre-treatment FDG PET/CT-derived ML models is feasible in cHL patients. Further work is needed to determine optimum predictive thresholds for clinical use. KEY POINTS: • A fixed threshold segmentation method led to more robust radiomic features. • A radiomic-based model for predicting 2-year event-free survival in classical Hodgkin lymphoma patients is feasible. • A predictive model based on ridge regression was the best performing model on our dataset.


Assuntos
Doença de Hodgkin , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Fluordesoxiglucose F18/metabolismo , Doença de Hodgkin/diagnóstico por imagem , Doença de Hodgkin/terapia , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Estudos Retrospectivos , Adulto Jovem
8.
Eur J Nucl Med Mol Imaging ; 49(13): 4652-4660, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35876867

RESUMO

PURPOSE: Current European Association of Nuclear Medicine (EANM) Research Ltd. (EARL) guidelines for the standardisation of PET imaging developed for conventional systems have not yet been adjusted for long axial field-of-view (LAFOV) systems. In order to use the LAFOV Siemens Biograph Vision Quadra PET/CT (Siemens Healthineers, Knoxville, TN, USA) in multicentre research and harmonised clinical use, compliance to EARL specifications for 18F-FDG tumour imaging was explored in the current study. Additional tests at various locations throughout the LAFOV and the use of shorter scan durations were included. Furthermore, clinical data were collected to further explore and validate the effects of reducing scan duration on semi-quantitative PET image biomarker accuracy and precision when using EARL-compliant reconstruction settings. METHODS: EARL compliance phantom measurements were performed using the NEMA image quality phantom both in the centre and at various locations throughout the LAFOV. PET data (maximum ring difference (MRD) = 85) were reconstructed using various reconstruction parameters and reprocessed to obtain images at shorter scan durations. Maximum, mean and peak activity concentration recovery coefficients (RC) were obtained for each sphere and compared to EARL standards specifications. Additionally, PET data (MRD = 85) of 10 oncological patients were acquired and reconstructed using various reconstruction settings and reprocessed from 10 min listmode acquisition into shorter scan durations. Per dataset, SUVs were derived from tumour lesions and healthy tissues. ANOVA repeated measures were performed to explore differences in lesion SUVmax and SUVpeak. Wilcoxon signed-rank tests were performed to evaluate differences in background SUVpeak and SUVmean between scan durations. The coefficient of variation (COV) was calculated to characterise noise. RESULTS: Phantom measurements showed EARL compliance for all positions throughout the LAFOV for all scan durations. Regarding patient data, EARL-compliant images showed no clinically meaningful significant differences in lesion SUVmax and SUVpeak or background SUVmean and SUVpeak between scan durations. Here, COV only varied slightly. CONCLUSION: Images obtained using the Vision Quadra PET/CT comply with EARL specifications. Scan duration and/or activity administration can be reduced up to a factor tenfold without the interference of increased noise.


Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluordesoxiglucose F18 , Imagens de Fantasmas , Biomarcadores
9.
Cancers (Basel) ; 14(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35406482

RESUMO

BACKGROUND: Approximately 30% of patients with diffuse large B-cell lymphoma (DLBCL) will have recurrence. The aim of this study was to develop a radiomic based model derived from baseline PET/CT to predict 2-year event free survival (2-EFS). METHODS: Patients with DLBCL treated with R-CHOP chemotherapy undergoing pre-treatment PET/CT between January 2008 and January 2018 were included. The dataset was split into training and internal unseen test sets (ratio 80:20). A logistic regression model using metabolic tumour volume (MTV) and six different machine learning classifiers created from clinical and radiomic features derived from the baseline PET/CT were trained and tuned using four-fold cross validation. The model with the highest mean validation receiver operator characteristic (ROC) curve area under the curve (AUC) was tested on the unseen test set. RESULTS: 229 DLBCL patients met the inclusion criteria with 62 (27%) having 2-EFS events. The training cohort had 183 patients with 46 patients in the unseen test cohort. The model with the highest mean validation AUC combined clinical and radiomic features in a ridge regression model with a mean validation AUC of 0.75 ± 0.06 and a test AUC of 0.73. CONCLUSIONS: Radiomics based models demonstrate promise in predicting outcomes in DLBCL patients.

11.
J Imaging ; 7(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34460766

RESUMO

The porcine pancreatic elastase (PPE) model is a common preclinical model of abdominal aortic aneurysms (AAA). Some notable characteristics of this model include the low aortic rupture rate, non-progressive disease course, and infra-renal AAA formation. Enhanced [18F]fluorothymidine ([18F]FLT) uptake on positron emission tomography/computed tomography (PET/CT) has previously been reported in the angiotensin II-induced murine model of AAA. Here, we report our preliminary findings of investigating [18F]FLT uptake in the PPE murine model of AAA. [18F]FLT uptake was found to be substantially increased in the abdominal areas recovering from the surgery, whilst it was not found to be significantly increased within the PPE-induced AAA, as confirmed using in vivo PET/CT and ex vivo whole-organ gamma counting (PPE, n = 7; controls, n = 3). This finding suggests that the [18F]FLT may not be an appropriate radiotracer for this specific AAA model, and further studies with larger sample sizes are warranted to elucidate the pathobiology contributing to the reduced uptake of [18F]FLT in this model.

12.
Philos Trans A Math Phys Eng Sci ; 379(2204): 20200207, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34218675

RESUMO

Subject motion in positron emission tomography (PET) is a key factor that degrades image resolution and quality, limiting its potential capabilities. Correcting for it is complicated due to the lack of sufficient measured PET data from each position. This poses a significant barrier in calculating the amount of motion occurring during a scan. Motion correction can be implemented at different stages of data processing either during or after image reconstruction, and once applied accurately can substantially improve image quality and information accuracy. With the development of integrated PET-MRI (magnetic resonance imaging) scanners, internal organ motion can be measured concurrently with both PET and MRI. In this review paper, we explore the synergistic use of PET and MRI data to correct for any motion that affects the PET images. Different types of motion that can occur during PET-MRI acquisitions are presented and the associated motion detection, estimation and correction methods are reviewed. Finally, some highlights from recent literature in selected human and animal imaging applications are presented and the importance of motion correction for accurate kinetic modelling in dynamic PET-MRI is emphasized. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Imagem Multimodal/estatística & dados numéricos , Tomografia por Emissão de Pósitrons/estatística & dados numéricos , Animais , Artefatos , Encéfalo/diagnóstico por imagem , Sistema Cardiovascular/diagnóstico por imagem , Bases de Dados Factuais , Humanos , Interpretação de Imagem Assistida por Computador/estatística & dados numéricos , Movimento (Física) , Movimento , Contração Miocárdica , Neoplasias/diagnóstico por imagem , Respiração , Software
13.
Philos Trans A Math Phys Eng Sci ; 379(2200): 20200201, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33966459

RESUMO

Abdominal aortic aneurysm (AAA) monitoring and risk of rupture is currently assumed to be correlated with the aneurysm diameter. Aneurysm growth, however, has been demonstrated to be unpredictable. Using PET to measure uptake of [18F]-NaF in calcified lesions of the abdominal aorta has been shown to be useful for identifying AAA and to predict its growth. The PET low spatial resolution, however, can affect the accuracy of the diagnosis. Advanced edge-preserving reconstruction algorithms can overcome this issue. The kernel method has been demonstrated to provide noise suppression while retaining emission and edge information. Nevertheless, these findings were obtained using simulations, phantoms and a limited amount of patient data. In this study, the authors aim to investigate the usefulness of the anatomically guided kernelized expectation maximization (KEM) and the hybrid KEM (HKEM) methods and to judge the statistical significance of the related improvements. Sixty-one datasets of patients with AAA and 11 from control patients were reconstructed with ordered subsets expectation maximization (OSEM), HKEM and KEM and the analysis was carried out using the target-to-blood-pool ratio, and a series of statistical tests. The results show that all algorithms have similar diagnostic power, but HKEM and KEM can significantly recover uptake of lesions and improve the accuracy of the diagnosis by up to 22% compared to OSEM. The same improvements are likely to be obtained in clinical applications based on the quantification of small lesions, like for example cancer. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 1'.


Assuntos
Algoritmos , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/estatística & dados numéricos , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Simulação por Computador , Bases de Dados Factuais/estatística & dados numéricos , Radioisótopos de Flúor , Humanos , Interpretação de Imagem Assistida por Computador/estatística & dados numéricos , Imagens de Fantasmas , Compostos Radiofarmacêuticos , Fluoreto de Sódio
14.
EJNMMI Phys ; 5(1): 34, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30519974

RESUMO

BACKGROUND: Positron emission tomography (PET) imaging has a wide applicability in oncology, cardiology and neurology. However, a major drawback when imaging very active regions such as the bladder is the spill-in effect, leading to inaccurate quantification and obscured visualisation of nearby lesions. Therefore, this study aims at investigating and correcting for the spill-in effect from high-activity regions to the surroundings as a function of activity in the hot region, lesion size and location, system resolution and application of post-filtering using a recently proposed background correction technique. This study involves analytical simulations for the digital XCAT2 phantom and validation acquiring NEMA phantom and patient data with the GE Signa PET/MR scanner. Reconstructions were done using the ordered subset expectation maximisation (OSEM) algorithm. Dedicated point-spread function (OSEM+PSF) and a recently proposed background correction (OSEM+PSF+BC) were incorporated into the reconstruction for spill-in correction. The standardised uptake values (SUV) were compared for all reconstruction algorithms. RESULTS: The simulation study revealed that lesions within 15-20 mm from the hot region were predominantly affected by the spill-in effect, leading to an increased bias and impaired lesion visualisation within the region. For OSEM, lesion SUVmax converged to the true value at low bladder activity, but as activity increased, there was an overestimation as much as 19% for proximal lesions (distance around 15-20 mm from the bladder edge) and 2-4% for distant lesions (distance larger than 20 mm from the bladder edge). As bladder SUV increases, the % SUV change for proximal lesions is about 31% and 6% for SUVmax and SUVmean, respectively, showing that the spill-in effect is more evident for the SUVmax than the SUVmean. Also, the application of post-filtering resulted in up to 65% increment in the spill-in effect around the bladder edges. For proximal lesions, PSF has no major improvement over OSEM because of the spill-in effect, coupled with the blurring effect by post-filtering. Within two voxels around the bladder, the spill-in effect in OSEM is 42% (32%), while for OSEM+PSF, it is 31% (19%), with (and without) post-filtering, respectively. But with OSEM+PSF+BC, the spill-in contribution from the bladder was relatively low (below 5%, either with or without post-filtering). These results were further validated using the NEMA phantom and patient data for which OSEM+PSF+BC showed about 70-80% spill-in reduction around the bladder edges and increased contrast-to-noise ratio up to 36% compared to OSEM and OSEM+PSF reconstructions without post-filtering. CONCLUSION: The spill-in effect is dependent on the activity in the hot region, lesion size and location, as well as post-filtering; and this is more evident in SUVmax than SUVmean. However, the recently proposed background correction method facilitates stability in quantification and enhances the contrast in lesions with low uptake.

15.
Med Phys ; 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29933508

RESUMO

PURPOSE: Printing technology, capable of producing three-dimensional (3D) objects, has evolved in recent years and provides potential for developing reproducible and sophisticated physical phantoms. 3D printing technology can help rapidly develop relatively low cost phantoms with appropriate complexities, which are useful in imaging or dosimetry measurements. The need for more realistic phantoms is emerging since imaging systems are now capable of acquiring multimodal and multiparametric data. This review addresses three main questions about the 3D printers currently in use, and their produced materials. The first question investigates whether the resolution of 3D printers is sufficient for existing imaging technologies. The second question explores if the materials of 3D-printed phantoms can produce realistic images representing various tissues and organs as taken by different imaging modalities such as computer tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), ultrasound (US), and mammography. The emergence of multimodal imaging increases the need for phantoms that can be scanned using different imaging modalities. The third question probes the feasibility and easiness of "printing" radioactive or nonradioactive solutions during the printing process. METHODS: A systematic review of medical imaging studies published after January 2013 is performed using strict inclusion criteria. The databases used were Scopus and Web of Knowledge with specific search terms. In total, 139 papers were identified; however, only 50 were classified as relevant for this paper. In this review, following an appropriate introduction and literature research strategy, all 50 articles are presented in detail. A summary of tables and example figures of the most recent advances in 3D printing for the purposes of phantoms across different imaging modalities are provided. RESULTS: All 50 studies printed and scanned phantoms in either CT, PET, SPECT, mammography, MRI, and US-or a combination of those modalities. According to the literature, different parameters were evaluated depending on the imaging modality used. Almost all papers evaluated more than two parameters, with the most common being Hounsfield units, density, attenuation and speed of sound. CONCLUSIONS: The development of this field is rapidly evolving and becoming more refined. There is potential to reach the ultimate goal of using 3D phantoms to get feedback on imaging scanners and reconstruction algorithms more regularly. Although the development of imaging phantoms is evident, there are still some limitations to address: One of which is printing accuracy, due to the printer properties. Another limitation is the materials available to print: There are not enough materials to mimic all the tissue properties. For example, one material can mimic one property-such as the density of real tissue-but not any other property, like speed of sound or attenuation.

16.
Phys Med Biol ; 61(2): 758-73, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26732644

RESUMO

The spill-in counts from neighbouring regions can significantly bias the quantification over small regions close to high activity extended sources. This effect can be a drawback for (18)F-based radiotracers positron emission tomography (PET) when quantitatively evaluating the bladder area for diseases such as prostate cancer. In this work, we use Monte Carlo simulations to investigate the impact of the spill-in counts from the bladder on the quantitative evaluation of prostate cancer when using (18)F-Fluorcholine (FCH) PET and we propose a novel reconstruction-based correction method. Monte Carlo simulations of a modified version of the XCAT2 anthropomorphic phantom with (18)F-FCH biological distribution, variable bladder uptake and inserted prostatic tumours were used in order to obtain simulated realistic (18)F-FCH data. We evaluated possible variations of the measured tumour Standardized Uptake Value (SUV) for different values of bladder uptake and propose a novel correction by appropriately adapting image reconstruction methodology. The correction is based on the introduction of physiological background terms on the reconstruction, removing the contribution of the bladder to the final image. The bladder is segmented from the reconstructed image and then forward-projected to the sinogram space. The resulting sinograms are used as background terms for the reconstruction. SUV max and SUV mean could be overestimated by 41% and 22% respectively due to the accumulation of radiotracer in the bladder, with strong dependence on bladder-to-lesion ratio. While the SUVs measured under these conditions are not reliable, images corrected using the proposed methodology provide better repeatability of SUVs, with biases below 6%. Results also showed remarkable improvements on visual detectability. The spill-in counts from the bladder can affect prostatic SUV measurements of (18)F-FCH images, which can be corrected to less than 6% using the proposed methodology, providing reliable SUV values even in the presence of high radioactivity accumulation in the bladder.


Assuntos
Fluordesoxiglucose F18/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos/farmacocinética , Bexiga Urinária/diagnóstico por imagem , Algoritmos , Humanos , Masculino , Imagens de Fantasmas
17.
Am J Nucl Med Mol Imaging ; 5(5): 527-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26550543

RESUMO

Positron emission tomography (PET) is widely used nowadays for tumor staging and therapy response in the clinic. However, average PET radiation exposure has increased due to higher PET utilization. This study aims to review state-of-the-art PET tracer dosage optimization methods after accounting for the effects of human body attenuation and scan protocol parameters on the counting rate. In particular, the relationship between the noise equivalent count rate (NECR) and the dosage (NECR-dosage curve) for a range of clinical PET systems and body attenuation sizes will be systematically studied to prospectively estimate the minimum dosage required for sufficiently high NECR. The optimization criterion can be determined either as a function of the peak of the NECR-dosage curve or as a fixed NECR score when NECR uniformity across a patient population is important. In addition, the systematic NECR assessments within a controllable environment of realistic simulations and phantom experiments can lead to a NECR-dosage response model, capable of predicting the optimal dosage for every individual PET scan. Unlike conventional guidelines suggesting considerably large dosage levels for obese patients, NECR-based optimization recommends: i) moderate dosage to achieve 90% of peak NECR for obese patients, ii) considerable dosage reduction for slimmer patients such that uniform NECR is attained across the patient population, and iii) prolongation of scans for PET/MR protocols, where longer PET acquisitions are affordable due to lengthy MR sequences, with motion compensation becoming important then. Finally, the need for continuous adaptation of dosage optimization to emerging technologies will be discussed.

18.
Hell J Nucl Med ; 18(2): 140-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26187214

RESUMO

OBJECTIVE: With the increasing number of patients undergoing positron emission tomography (PET) scans and the fact that multiple whole body acquisitions are performed during therapy monitoring, the reduction of scan time as well as of the injected radioactive dose are important issues. However, short scan time and reduction of the injected radiation dose result in low count statistics, which significantly affects the quality of the reconstructed images and accurate diagnosis. SUBJECTS AND METHODS: The aim of this study was to explore the effect of low count statistics on ordered subset expectation maximization regularized with median root prior (OS-MRP-OSL) reconstructed images. By optimizing OS-MRP-OSL we determine whether a satisfactory handling of the noise properties and bias can be achieved compared to post-filtered ordered subset expectation maximization (OSEM), which will lead to improved image quality in simulations with more noise. We used realistic simulated PET data of a thorax with lesions corresponding to tumors with different intensities. RESULTS: OS-MRP-OSL provided reduced noise from post-filtered OSEM, without having the negative effect of blurring. On the other hand, bias presented no significant difference. CONCLUSION: This work is relevant to future PET reconstruction of clinical images and PET-magnetic resonance investigations where the reduced injected dose will allow imaging a larger cohort of humans.


Assuntos
Algoritmos , Artefatos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Simulação por Computador , Humanos , Funções Verossimilhança , Modelos Estatísticos , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade
19.
J Nucl Med ; 56(9): 1408-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26182970

RESUMO

UNLABELLED: (18)F-fluoride PET/CT offers the opportunity for accurate skeletal metastasis staging, compared with conventional imaging methods. (18)F-fluoride is a bone-specific tracer whose uptake depends on osteoblastic activity. Because of the resulting increase in bone mineralization and sclerosis, the osteoblastic process can also be detected morphologically in CT images. Although CT is characterized by high resolution, the potential of PET is limited by its lower spatial resolution and the resulting partial-volume effect. In this context, the synergy between PET and CT presents an opportunity to resolve this limitation using a novel multimodal approach called synergistic functional-structural resolution recovery (SFS-RR). Its performance is benchmarked against current resolution recovery technology using the point-spread function (PSF) of the scanner in the reconstruction procedure. METHODS: The SFS-RR technique takes advantage of the multiresolution property of the wavelet transform applied to both functional and structural images to create a high-resolution PET image that exploits the structural information of CT. Although the method was originally conceived for PET/MR imaging of brain data, an ad hoc version for whole-body PET/CT is proposed here. Three phantom experiments and 2 datasets of metastatic bone (18)F-fluoride PET/CT images from primary prostate and breast cancer were used to test the algorithm performances. The SFS-RR images were compared with the manufacturer's PSF-based reconstruction using the standardized uptake value (SUV) and the metabolic volume as metrics for quantification. RESULTS: When compared with standard PET images, the phantom experiments showed a bias reduction of 14% in activity and 1.3 cm(3) in volume estimates for PSF images and up to 20% and 2.5 cm(3) for the SFS-RR images. The SFS-RR images were characterized by a higher recovery coefficient (up to 60%) whereas noise levels remained comparable to those of standard PET. The clinical data showed an increase in the SUV estimates for SFS-RR images up to 34% for peak SUV and 50% for maximum SUV and mean SUV. Images were also characterized by sharper lesion contours and better lesion detectability. CONCLUSION: The proposed methodology generates PET images with improved quantitative and qualitative properties. Compared with standard methods, SFS-RR provides superior lesion segmentation and quantification, which may result in more accurate tumor characterization.


Assuntos
Artefatos , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/secundário , Fluordesoxiglucose F18 , Aumento da Imagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Humanos , Imageamento Tridimensional/métodos , Imagem Multimodal/instrumentação , Imagem Multimodal/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos
20.
Eur Radiol ; 25(9): 2805-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25994189

RESUMO

OBJECTIVES: Measuring tumour heterogeneity by textural analysis in (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) provides predictive and prognostic information but technical aspects of image processing can influence parameter measurements. We therefore tested effects of image smoothing, segmentation and quantisation on the precision of heterogeneity measurements. METHODS: Sixty-four (18)F-FDG PET/CT images of oesophageal cancer were processed using different Gaussian smoothing levels (2.0, 2.5, 3.0, 3.5, 4.0 mm), maximum standardised uptake value (SUVmax) segmentation thresholds (45%, 50%, 55%, 60%) and quantisation (8, 16, 32, 64, 128 bin widths). Heterogeneity parameters included grey-level co-occurrence matrix (GLCM), grey-level run length matrix (GLRL), neighbourhood grey-tone difference matrix (NGTDM), grey-level size zone matrix (GLSZM) and fractal analysis methods. The concordance correlation coefficient (CCC) for the three processing variables was calculated for each heterogeneity parameter. RESULTS: Most parameters showed poor agreement between different bin widths (CCC median 0.08, range 0.004-0.99). Segmentation and smoothing showed smaller effects on precision (segmentation: CCC median 0.82, range 0.33-0.97; smoothing: CCC median 0.99, range 0.58-0.99). CONCLUSIONS: Smoothing and segmentation have only a small effect on the precision of heterogeneity measurements in (18)F-FDG PET data. However, quantisation often has larger effects, highlighting a need for further evaluation and standardisation of parameters for multicentre studies. KEY POINTS: • Heterogeneity measurement precision in (18) F-FDG PET is influenced by image processing methods. • Quantisation shows large effects on precision of heterogeneity parameters in (18) F-FDG PET/CT. • Smoothing and segmentation show comparatively smaller effects on precision of heterogeneity parameters.


Assuntos
Neoplasias Esofágicas/diagnóstico por imagem , Fluordesoxiglucose F18 , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Esôfago/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA