Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(1)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-35011609

RESUMO

Protein phosphorylation plays critical roles in a variety of intracellular signaling pathways and physiological functions that are controlled by neurotransmitters and neuromodulators in the brain. Dysregulation of these signaling pathways has been implicated in neurodevelopmental disorders, including autism spectrum disorder, attention deficit hyperactivity disorder and schizophrenia. While recent advances in mass spectrometry-based proteomics have allowed us to identify approximately 280,000 phosphorylation sites, it remains largely unknown which sites are phosphorylated by which kinases. To overcome this issue, previously, we developed methods for comprehensive screening of the target substrates of given kinases, such as PKA and Rho-kinase, upon stimulation by extracellular signals and identified many candidate substrates for specific kinases and their phosphorylation sites. Here, we developed a novel online database to provide information about the phosphorylation signals identified by our methods, as well as those previously reported in the literature. The "KANPHOS" (Kinase-Associated Neural Phospho-Signaling) database and its web portal were built based on a next-generation XooNIps neuroinformatics tool. To explore the functionality of the KANPHOS database, we obtained phosphoproteomics data for adenosine-A2A-receptor signaling and its downstream MAPK-mediated signaling in the striatum/nucleus accumbens, registered them in KANPHOS, and analyzed the related pathways.


Assuntos
Encéfalo/metabolismo , Bases de Dados de Proteínas , Neurônios/metabolismo , Proteínas Quinases/metabolismo , Animais , Canais de Cálcio/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos C57BL , Fosfoproteínas/metabolismo , Fosforilação , Receptor A2A de Adenosina/metabolismo , Especificidade por Substrato
2.
Curr Protoc Chem Biol ; 11(1): e60, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30615307

RESUMO

Protein phosphorylation plays a critical role in the regulation of cellular function. Information on protein phosphorylation and the responsible kinases is important for understanding intracellular signaling. A method for in vivo screening of kinase substrates named KIOSS (kinase-oriented substrate screening) has been developed. This protocol provides a method that utilizes phosphoprotein-binding modules such as 14-3-3 protein, the pin1-WW domain, and the chek2-FHA domain as biological filters to successfully enrich phosphorylated proteins related to intracellular signaling rather than housekeeping and/or structural proteins. More than 1000 substrate candidates for PKA, PKC, MAPK, and Rho-kinase in HeLa cells, as well as phosphorylation downstream of D1R, NMDAR, adenosine A2a receptor, PKA, PKC, MAPK, and Rho-kinase in mouse brain slice cultures have been identified by this method. An online database named KANPHOS (Kinase-Associated Neural Phospho-Signaling) provides the phosphorylation signals identified by these studies, as well as those previously reported in the literature. © 2019 by John Wiley & Sons, Inc.


Assuntos
Proteínas Quinases/metabolismo , Especificidade por Substrato , Animais , Células HeLa , Humanos , Camundongos , Fosforilação , Células Tumorais Cultivadas
3.
Neuron ; 89(3): 550-65, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26804993

RESUMO

Dopamine (DA) type 1 receptor (D1R) signaling in the striatum presumably regulates neuronal excitability and reward-related behaviors through PKA. However, whether and how D1Rs and PKA regulate neuronal excitability and behavior remain largely unknown. Here, we developed a phosphoproteomic analysis method to identify known and novel PKA substrates downstream of the D1R and obtained more than 100 candidate substrates, including Rap1 GEF (Rasgrp2). We found that PKA phosphorylation of Rasgrp2 activated its guanine nucleotide-exchange activity on Rap1. Cocaine exposure activated Rap1 in the nucleus accumbens in mice. The expression of constitutively active PKA or Rap1 in accumbal D1R-expressing medium spiny neurons (D1R-MSNs) enhanced neuronal firing rates and behavioral responses to cocaine exposure through MAPK. Knockout of Rap1 in the accumbal D1R-MSNs was sufficient to decrease these phenotypes. These findings demonstrate a novel DA-PKA-Rap1-MAPK intracellular signaling mechanism in D1R-MSNs that increases neuronal excitability to enhance reward-related behaviors.


Assuntos
Dopamina/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Proteômica , Receptores de Dopamina D1/metabolismo , Recompensa , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP/metabolismo , Potenciais de Ação/fisiologia , Animais , Benzazepinas/farmacologia , Cocaína/farmacologia , Colforsina/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dopamina/farmacologia , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/fisiologia , Núcleo Accumbens/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas rap1 de Ligação ao GTP/genética
4.
Cell Rep ; 14(1): 11-21, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26725111

RESUMO

Unveiling the molecular and cellular mechanisms underlying memory has been a challenge for the past few decades. Although synaptic plasticity is proven to be essential for memory formation, the significance of "single-cell memory" still remains elusive. Here, we exploited a primary culture system for the analysis of C. elegans neurons and show that a single thermosensory neuron has an ability to form, retain, and reset a temperature memory. Genetic and proteomic analyses found that the expression of the single-cell memory exhibits inter-individual variability, which is controlled by the evolutionarily conserved CaMKI/IV and Raf pathway. The variable responses of a sensory neuron influenced the neural activity of downstream interneurons, suggesting that modulation of the sensory neurons ultimately determines the behavioral output in C. elegans. Our results provide proof of single-cell memory and suggest that the individual differences in neural responses at the single-cell level can confer individuality.


Assuntos
Caenorhabditis elegans/metabolismo , Memória/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Transdução de Sinais/fisiologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Quinases raf/metabolismo
5.
Nat Neurosci ; 18(5): 698-707, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25821909

RESUMO

Disrupted-in-schizophrenia 1 (DISC1) is a susceptibility gene for major psychiatric disorders, including schizophrenia. DISC1 has been implicated in neurodevelopment in relation to scaffolding signal complexes. Here we used proteomic analysis to screen for DISC1 interactors and identified several RNA-binding proteins, such as hematopoietic zinc finger (HZF), that act as components of RNA-transporting granules. HZF participates in the mRNA localization of inositol-1,4,5-trisphosphate receptor type 1 (ITPR1), which plays a key role in synaptic plasticity. DISC1 colocalizes with HZF and ITPR1 mRNA in hippocampal dendrites and directly associates with neuronal mRNAs, including ITPR1 mRNA. The binding potential of DISC1 for ITPR1 mRNA is facilitated by HZF. Studies of Disc1-knockout mice have revealed that DISC1 regulates the dendritic transport of Itpr1 mRNA by directly interacting with its mRNA. The DISC1-mediated mRNA regulation is involved in synaptic plasticity. We show that DISC1 binds ITPR1 mRNA with HZF, thereby regulating its dendritic transport for synaptic plasticity.


Assuntos
Hipocampo/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas/fisiologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/fisiologia , Regiões 3' não Traduzidas/genética , Animais , Transporte Biológico , Grânulos Citoplasmáticos/metabolismo , Dendritos/metabolismo , Dendritos/ultraestrutura , Hipocampo/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/metabolismo
6.
J Neurosci ; 27(1): 15-26, 2007 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-17202468

RESUMO

Disrupted-In-Schizophrenia 1 (DISC1) is a candidate gene for susceptibility to schizophrenia. DISC1 is reported to interact with NudE-like (NUDEL), which forms a complex with lissencephaly-1 (LIS1) and 14-3-3epsilon. 14-3-3epsilon is involved in the proper localization of NUDEL and LIS1 in axons. Although the functional significance of this complex in neuronal development has been reported, the transport mechanism of the complex into axons and their functions in axon formation remain essentially unknown. Here we report that Kinesin-1, a motor protein of anterograde axonal transport, was identified as a novel DISC1-interacting molecule. DISC1 directly interacted with kinesin heavy chain of Kinesin-1. Kinesin-1 interacted with the NUDEL/LIS1/14-3-3epsilon complex through DISC1, and these molecules localized mainly at cell bodies and partially in the distal part of the axons. DISC1 partially colocalized with Kinesin family member 5A, NUDEL, LIS1, and 14-3-3epsilon in the growth cones. The knockdown of DISC1 by RNA interference or the dominant-negative form of DISC1 inhibited the accumulation of NUDEL, LIS1, and 14-3-3epsilon at the axons and axon elongation. The knockdown or the dominant-negative form of Kinesin-1 inhibited the accumulation of DISC1 at the axons and axon elongation. Furthermore, the knockdown of NUDEL or LIS1 inhibited axon elongation. Together, these results indicate that DISC1 regulates the localization of NUDEL/LIS1/14-3-3epsilon complex into the axons as a cargo receptor for axon elongation.


Assuntos
Proteínas 14-3-3/metabolismo , Axônios/metabolismo , Axônios/ultraestrutura , Cisteína Endopeptidases/metabolismo , Cinesinas/metabolismo , Proteínas Motores Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Transporte Biológico Ativo , Células COS , Crescimento Celular , Chlorocebus aethiops , Homeostase/fisiologia , Células PC12 , Ratos
7.
Biochem Biophys Res Commun ; 335(1): 139-45, 2005 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-16055082

RESUMO

In the model organism Caenorhabditis elegans, UNC-112 is colocalized with PAT-3/beta-integrin and is a critical protein in the formation of PAT-3-mediated adhesive structure in body-wall muscle cells. However, the signaling pathway downstream of PAT-3/UNC-112 is largely unknown. To clarify the signaling pathway from PAT-3/UNC-112 to the actin cytoskeleton, we searched for and identified a novel Dbl homology/pleckstrin homology (DH/PH) domain containing protein, UIG-1 (UNC-112-interacting guanine nucleotide exchange factor-1). UIG-1 was colocalized with UNC-112 at dense bodies in body-wall muscle cells. UIG-1 showed CDC-42-specific GEF activity in vitro and induced filopodia formation in NIH 3T3 cells. Depletion of CDC-42 or PAT-3 in the developmental stage, by RNAi, prevented the formation of continuous actin filament in body-wall muscle cells. Taken together, these results suggest that UIG-1 links a PAT-3/UNC-112 complex to the CDC-42 signaling pathway during muscle formation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Cadeias beta de Integrinas/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Linhagem Celular , Chlorocebus aethiops , Integrinas/metabolismo , Camundongos , Músculos/citologia , Músculos/metabolismo , Ligação Proteica , Pseudópodes/metabolismo , Transdução de Sinais , Aderências Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA