Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 284, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932164

RESUMO

The control of cell movement through manipulation of cytoskeletal structure has therapeutic prospects notably in the development of novel anti-metastatic drugs. In this study, we determine the structure of Ras-binding domain (RBD) of ELMO1, a protein involved in cytoskeletal regulation, both alone and in complex with the activator RhoG and verify its targetability through computational nanobody design. Using our dock-and-design approach optimized with native-like initial pose selection, we obtain Nb01, a detectable binder from scratch in the first-round design. An affinity maturation step guided by structure-activity relationship at the interface generates 23 Nb01 sequence variants and 17 of them show enhanced binding to ELMO1-RBD and are modeled to form major spatial overlaps with RhoG. The best binder, Nb29, inhibited ELMO1-RBD/RhoG interaction. Molecular dynamics simulation of the flexibility of CDR2 and CDR3 of Nb29 reveal the design of stabilizing mutations at the CDR-framework junctions potentially confers the affinity enhancement.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Simulação de Dinâmica Molecular , Proteínas rho de Ligação ao GTP , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
2.
Biomol NMR Assign ; 15(1): 1-7, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32930954

RESUMO

In humans, YTH (YT521-B homology) domain containing protein 2 (YTHDC2) plays a crucial role in the phase-shift from mitosis to meiosis. YTH domains bind to methylated adenosine nucleotides such as m6A. In a phylogenic tree, the YTH domain of YTHDC2 (YTH2) and that of the YTH containing protein YTHDC1 (YTH1) belong to the same sub-group. However, the binding affinity of m6A differs between these proteins. Here, we report 1H, 13C and 15N resonance assignment of YTH2 and its solution structure to examine the difference of the structural architecture and the dynamic properties of YTH1 and YTH2. YTH2 adopts a ß1-α1-ß2-α2-ß3-ß4-ß5-α3-ß6-α4 topology, which was also observed in YTH1. However, the ß4-ß5 loops of YTH1 and YTH2 are distinct in length and amino acid composition. Our data revealed that, unlike in YTH1, the structure of m6A-binding pocket of YTH2 formed by the ß4-ß5 loop is stabilized by electrostatic interaction. This assignment and the structural information for YTH2 will provide the insight on the further functional research of YTHDC2.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Adenosina , RNA
3.
Eur Biophys J ; 48(4): 361-369, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30937482

RESUMO

Transcriptional repressor Bach1 plays an important role in antioxidant response. Bach1 function is regulated by heme binding to the four cysteine-proline (CP) motifs in Bach1, which leads to inhibition of its activity. Three of these CP motifs are located N-terminal to the bZip (basic leucine zipper) domain that is responsible for DNA binding. Based on sequence analysis, the region surrounding these CP motifs was expected to be intrinsically disordered. Bach1 is one of few known intrinsically disordered proteins that accept multiple heme molecules for functional regulation, but the molecular mechanisms of heme binding and functional regulation remain unclear. Uncovering these mechanisms is important for understanding Bach1-mediated antioxidant response. Biophysical characterization revealed that 5-coordinated heme binding was unique to the CP motifs within the heme-binding region of Bach1, whereas 6-coordinated binding occurred nonspecifically. Comparison of the wild-type protein and a CP motif mutant indicated that the level of 6-coordinated heme binding was reduced in the absence of 5-coordinated heme binding. Analytical ultracentrifugation showed that the CP motif mutant protein had a more elongated conformation than the wild-type protein, suggesting that cysteines within the CP motifs contribute to intramolecular interactions in Bach1. Thus, heme binding at the CP motifs induces a global conformational change in the Bach1 heme-binding region, and this conformational change, in turn, regulates the biological activity of Bach1.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fenômenos Biofísicos , Heme/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Camundongos , Ligação Proteica
4.
Biomol NMR Assign ; 11(2): 265-268, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28808919

RESUMO

Musashi1 (Msi1) is an RNA-binding protein that is involved in cell fate determination. Here, we report the 1H, 15N, and 13C resonance assignments of Msi1 second RNA-binding domain in free form and in complex with RNA. The assignments can be utilized for NMR structure and dynamics analyses of the Msi1:RNA complex, and moreover, for chemical shift perturbation analyses to evaluate the binding of potential small molecule inhibitors against Msi1:RNA interaction.


Assuntos
Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA/química , RNA/metabolismo , Animais , Camundongos , Ligação Proteica , Domínios Proteicos
5.
Molecules ; 22(7)2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28753936

RESUMO

Musashi-1 (Msi1) controls the maintenance of stem cells and tumorigenesis through binding to its target mRNAs and subsequent translational regulation. Msi1 has two RNA-binding domains (RBDs), RBD1 and RBD2, which recognize r(GUAG) and r(UAG), respectively. These minimal recognition sequences are connected by variable linkers in the Msi1 target mRNAs, however, the molecular mechanism by which Msi1 recognizes its targets is not yet understood. We previously determined the solution structure of the Msi1 RBD1:r(GUAGU) complex. Here, we determined the first structure of the RBD2:r(GUAGU) complex. The structure revealed that the central trinucleotide, r(UAG), is specifically recognized by the intermolecular hydrogen-bonding and aromatic stacking interactions. Importantly, the C-terminal region, which is disordered in the free form, took a certain conformation, resembling a helix. The observation of chemical shift perturbation and intermolecular NOEs, together with increases in the heteronuclear steady-state {¹H}-15N NOE values on complex formation, indicated the involvement of the C-terminal region in RNA binding. On the basis of the two complex structures, we built a structural model of consecutive RBDs with r(UAGGUAG) containing both minimal recognition sequences, which resulted in no steric hindrance. The model suggests recognition of variable lengths (n) of the linker up to n = 50 may be possible.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Ligação de Hidrogênio , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo
6.
Genes Dev ; 29(15): 1649-60, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26215567

RESUMO

The pre-mRNA splicing reaction of eukaryotic cells has to be carried out extremely accurately, as failure to recognize the splice sites correctly causes serious disease. The small subunit of the U2AF heterodimer is essential for the determination of 3' splice sites in pre-mRNA splicing, and several single-residue mutations of the U2AF small subunit cause severe disorders such as myelodysplastic syndromes. However, the mechanism of RNA recognition is poorly understood. Here we solved the crystal structure of the U2AF small subunit (U2AF23) from fission yeast, consisting of an RNA recognition motif (RRM) domain flanked by two conserved CCCH-type zinc fingers (ZFs). The two ZFs are positioned side by side on the ß sheet of the RRM domain. Further mutational analysis revealed that the ZFs bind cooperatively to the target RNA sequence, but the RRM domain acts simply as a scaffold to organize the ZFs and does not itself contact the RNA directly. This completely novel and unexpected mode of RNA-binding mechanism by the U2AF small subunit sheds light on splicing errors caused by mutations of this highly conserved protein.


Assuntos
Modelos Moleculares , Proteínas Nucleares/química , Sítios de Splice de RNA , Ribonucleoproteínas/química , Schizosaccharomyces/fisiologia , Dedos de Zinco/fisiologia , Motivos de Aminoácidos , Sítios de Ligação , Análise Mutacional de DNA , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Schizosaccharomyces/química , Fator de Processamento U2AF
7.
J Struct Funct Genomics ; 16(2): 55-65, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25801860

RESUMO

ZFAT is a transcriptional regulator, containing eighteen C2H2-type zinc-fingers and one AT-hook, involved in autoimmune thyroid disease, apoptosis, and immune-related cell survival. We determined the solution structures of the thirteen individual ZFAT zinc-fingers (ZF) and the tandemly arrayed zinc-fingers in the regions from ZF2 to ZF5, by NMR spectroscopy. ZFAT has eight uncommon bulged-out helix-containing zinc-fingers, and six of their structures (ZF4, ZF5, ZF6, ZF10, ZF11, and ZF13) were determined. The distribution patterns of the putative DNA-binding surface residues are different among the ZFAT zinc-fingers, suggesting the distinct DNA sequence preferences of the N-terminal and C-terminal zinc-fingers. Since ZFAT has three to five consecutive tandem zinc-fingers, which may cooperatively function as a unit, we also determined two tandemly arrayed zinc-finger structures, between ZF2 to ZF4 and ZF3 to ZF5. Our NMR spectroscopic analysis detected the interaction between ZF4 and ZF5, which are connected by an uncommon linker sequence, KKIK. The ZF4-ZF5 linker restrained the relative structural space between the two zinc-fingers in solution, unlike the other linker regions with determined structures, suggesting the involvement of the ZF4-ZF5 interfinger linker in the regulation of ZFAT function.


Assuntos
Proteínas de Ligação a DNA/química , Conformação Proteica , Fatores de Transcrição/química , Dedos de Zinco/genética , Sequência de Aminoácidos/genética , Animais , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Tireoidite Autoimune/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
8.
FEBS Lett ; 586(21): 3858-64, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23010590

RESUMO

The WWE domain is often identified in proteins associated with ubiquitination or poly-ADP-ribosylation. Structural information about WWE domains has been obtained for the ubiquitination-related proteins, such as Deltex and RNF146, but not yet for the poly-ADP-ribose polymerases (PARPs). Here we determined the solution structures of the WWE domains from PARP11 and PARP14, and compared them with that of the RNF146 WWE domain. NMR perturbation experiments revealed the specific differences in their ADP-ribose recognition modes that correlated with their individual biological activities. The present structural information sheds light on the ADP-ribose recognition modes by the PARP WWE domains.


Assuntos
Adenosina Difosfato Ribose/química , Poli(ADP-Ribose) Polimerases/síntese química , Ubiquitina-Proteína Ligases/síntese química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Simulação por Computador , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Poli(ADP-Ribose) Polimerases/química , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Ubiquitina-Proteína Ligases/química
9.
Nucleic Acids Res ; 40(7): 3218-31, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22140116

RESUMO

Mammalian Musashi1 (Msi1) is an RNA-binding protein that regulates the translation of target mRNAs, and participates in the maintenance of cell 'stemness' and tumorigenesis. Msi1 reportedly binds to the 3'-untranslated region of mRNA of Numb, which encodes Notch inhibitor, and impedes initiation of its translation by competing with eIF4G for PABP binding, resulting in triggering of Notch signaling. Here, the mechanism by which Msi1 recognizes the target RNA sequence using its Ribonucleoprotein (RNP)-type RNA-binding domains (RBDs), RBD1 and RBD2 has been revealed on identification of the minimal binding RNA for each RBD and determination of the three-dimensional structure of the RBD1:RNA complex. Unique interactions were found for the recognition of the target sequence by Msi1 RBD1: adenine is sandwiched by two phenylalanines and guanine is stacked on the tryptophan in the loop between ß1 and α1. The minimal recognition sequences that we have defined for Msi1 RBD1 and RBD2 have actually been found in many Msi1 target mRNAs reported to date. The present study provides molecular clues for understanding the biology involving Musashi family proteins.


Assuntos
Aminoácidos Aromáticos/química , Proteínas do Tecido Nervoso/química , Proteínas de Ligação a RNA/química , RNA/química , Animais , Sequência de Bases , Sítios de Ligação , Sequência Consenso , Camundongos , Modelos Moleculares , Proteínas do Tecido Nervoso/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Terciária de Proteína , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA