Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Endocr J ; 68(10): 1165-1177, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33980773

RESUMO

The toxicity of certain novel perfluoroalkyl substances (PFCs) has attracted increasing attention. However, the toxic effects of sodium p-perfluorous nonenoxybenzene sulfonate (OBS) on the endocrine system have not been elucidated. In this study, OBS was added to the drinking water during the pregnancy and lactation of the healthy female mice at dietary levels of 0.0 mg/L (CON), 0.5 mg/L (OBS-L), and 5.0 mg/L (OBS-H). OBS exposure during the pregnancy and lactation resulted in the presence of OBS residues in the placenta and fetus. We also analyzed physiological and biochemical parameters and gene expression levels in mice of the F0 and F1 generations after maternal OBS exposure. The total serum cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels were significantly increased in female mice of the F0 generation. The androgen levels in the serum and the ovarian mRNA levels of androgen receptor (AR) also tended to increase after maternal OBS exposure in the F0 generation mice. Moreover, maternal OBS exposure altered the mRNA expression of endocrine-related genes in male mice of F1 generation. Notably, the serum TC and LDL-C levels were significantly increased in 8-weeks-old male mice of the F1 generation, and the serum high-density lipoprotein cholesterol (HDL-C) levels were decreased in 24-week-old male mice of the F1 generation. These results indicated that maternal OBS exposure can interfere with endocrine homeostasis in the F0 and F1 generations. Therefore, exposure to OBS during pregnancy and lactation has the potential toxic effects on the dams and male offspring, which cannot be overlooked.


Assuntos
Disruptores Endócrinos/toxicidade , Receptor alfa de Estrogênio/efeitos dos fármacos , Exposição Materna , Ovário/efeitos dos fármacos , Receptores Androgênicos/efeitos dos fármacos , Testículo/efeitos dos fármacos , Útero/efeitos dos fármacos , 17-Hidroxiesteroide Desidrogenases/efeitos dos fármacos , 17-Hidroxiesteroide Desidrogenases/genética , Androgênios/sangue , Animais , Colesterol/sangue , HDL-Colesterol/sangue , HDL-Colesterol/efeitos dos fármacos , LDL-Colesterol/sangue , LDL-Colesterol/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Estrogênios/sangue , Feminino , Feto/química , Lactação , Masculino , Camundongos , Tamanho do Órgão , Ovário/patologia , Placenta/química , Gravidez , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptores Androgênicos/genética , Testículo/química , Testículo/patologia , Útero/química , Útero/patologia
2.
Gut Microbes ; 12(1): 1-19, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33151120

RESUMO

Obesity is associated with impaired intestinal barrier function and dysbiosis of the gut microbiota. Spermidine, a polyamine that acts as an autophagy inducer, has important benefits in patients with aging-associated diseases and metabolic dysfunction. However, the mechanism of spermidine on obesity remains unclear. Here, we show that spermidine intake is negatively correlated with obesity in both humans and mice. Spermidine supplementation causes a significant loss of weight and improves insulin resistance in diet-induced obese (DIO) mice. These effects are associated with the alleviation of metabolic endotoxemia and enhancement of intestinal barrier function, which might be mediated through autophagy pathway and TLR4-mediated microbial signaling transduction. Moreover, spermidine causes the significant alteration of microbiota composition and function. Microbiota depletion compromises function, while transplantation of spermidine-altered microbiota confers protection against obesity. These changes might partly be driven by an SCFA-producing bacterium, Lachnospiraceae NK4A136 group, which was decreased in obese subjects and subsequently increased by spermidine. Notably, the change of Lachnospiraceae NK4A136 group is significantly correlated with enhanced gut barrier function induced by spermidine. Our results indicate that spermidine supplementation may serve as a viable therapy for obesity.


Assuntos
Disbiose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Obesidade/tratamento farmacológico , Espermidina/farmacologia , Junções Íntimas/efeitos dos fármacos , Animais , Autofagia/fisiologia , Peso Corporal , Células CACO-2 , Linhagem Celular Tumoral , Clostridiales/metabolismo , Disbiose/microbiologia , Endotoxemia/tratamento farmacológico , Humanos , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/microbiologia , Transdução de Sinais , Junções Íntimas/microbiologia , Receptor 4 Toll-Like/metabolismo
3.
Chemosphere ; 235: 945-951, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31299707

RESUMO

6:2 chlorinated polyfluorinated ether sulfonate (F-53B), a Chinese PFOS alternative, has recently been identified in the aquatic environment at concentrations similar to or higher than perfluorooctane sulfonate (PFOS). Although previous studies have shown that F-53B can trigger oxidative stress in fish, the underlying molecular mechanism is still largely unknown. In this study, zebrafish embryos were exposed to various concentrations of F-53B (0, 0.5, 20 and 200 µg/L) for 5 d to investigate oxidative stress responses and possible molecular mechanisms of action. Our results showed that F-53B accumulated in a concentration-dependent manner in zebrafish larvae. The contents of malondialdehyde (MDA) and reduced glutathione (GSH), as well as the activities, mRNA and protein levels of most of antioxidant enzyme genes involved in the phosphatidylinositol 3-kinase (PI3K)/Akt/Nrf2-ARE pathway were significantly reduced. Further in silico study indicated that F-53B binds tightly to PI3K, which may be related to the inhibition of Nrf2-regulated antioxidant functions by F-53B as a PI3K inhibitor. Combining in vivo and in silico studies, we elucidated the effects of F-53B on antioxidant system of zebrafish through the PI3K/Akt/Nrf2-ARE pathway, which increases our understanding of the molecular mechanism of F-53B on antioxidant responses in fish.


Assuntos
Alcanossulfonatos/toxicidade , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Larva/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/embriologia , Animais , Glutationa/metabolismo , Malondialdeído/metabolismo , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Poluentes Químicos da Água/análise , Peixe-Zebra/metabolismo
4.
Toxicol Sci ; 162(1): 113-123, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106682

RESUMO

The fungicide imazalil (IMZ) is widely used to prevent and treat fungal diseases in plants and animals. Here, male adult C57BL/6 mice were exposed to 0.1, 0.5, and 2.5 mg/kg body weight IMZ for 2, 5, or 15 weeks. The microbiota in cecal contents and feces changed during chronic IMZ exposure at phylum and genus levels. Sequencing of the V3-V4 region of the bacterial 16S rRNA gene revealed a significant change in the richness of microbiota in cecal contents and feces after exposure to 2.5 mg/kg IMZ for 15 weeks. Operational taxonomic unit (OTU) analysis indicated that 31.1% of cecal OTUs and 14.0% of fecal OTUs changed after IMZ exposure. In addition, chronic IMZ exposure also disturbed the intestinal barrier function of the mice, reducing mucus secretion, decreasing the expression of cystic fibrosis transmembrane conductance regulator (CFTR)-related genes in both the ileum and colon. Molecular docking analysis revealed that key hydrogen bonds were formed by nitrogen atoms of the imidazole bond with Val440 of CFTR and Ala697 of the SLC26 family. Our data suggested that gut microbiota and intestinal barrier were potential toxicological targets of IMZ.


Assuntos
Disbiose/induzido quimicamente , Fungicidas Industriais/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Imidazóis/toxicidade , Intestinos/efeitos dos fármacos , Animais , Transporte Biológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Relação Dose-Resposta a Droga , Disbiose/microbiologia , Fezes/microbiologia , Fungicidas Industriais/metabolismo , Ligação de Hidrogênio , Imidazóis/metabolismo , Intestinos/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Transcriptoma
5.
Ecotoxicol Environ Saf ; 89: 189-95, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23294635

RESUMO

Butachlor is a chloroacetanilide herbicide widely employed in weeding important crops. Recently, the study of the possible toxic effects of butachlor in non-target organisms has increased substantially. However, the endocrine disruption, developmental toxicity and immunotoxicity effects of butachlor in fish have not been fully investigated in previous studies. In the present study, zebrafish embryos were exposed to a range of butachlor concentrations from 4 to 20 µM to evaluate the embryonic toxicity of butachlor until 84 hours postfertilization (hpf). The results demonstrated that butachlor was highly toxic to zebrafish embryos, hindering the hatching process, resulting in a series of malformations and followed by mortality. The malformations observed included pericardial edema (PE) and yolk sac edema (YSE), which showed concentration-dependent responses. The analysis of endocrine gene transcription indicated that butachlor significantly induced the expression of the estrogen-responsive gene Vtg1 but had no effect on the expression of the ERα gene. The innate immune system appeared to be another possible target of butachlor. At 72 hpf, butachlor significantly up-regulated the innate immune system-related genes, including IL-1ß, CC-chem, CXCL-C1c and IL-8. These data suggest that butachlor causes developmental toxicity, endocrine disruption and immune toxicity in the zebrafish embryo. Bidirectional interactions between the endocrine system and the immune system might be present, and further studies are needed to determine these possible pathways.


Assuntos
Acetanilidas/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Sistema Endócrino/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/embriologia , Animais , Quimiocinas CXC/metabolismo , Receptor alfa de Estrogênio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Interleucina-8/metabolismo , Pericárdio/efeitos dos fármacos , Vitelogeninas/metabolismo , Saco Vitelino/efeitos dos fármacos , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA