Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Ethnopharmacol ; 330: 118194, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38641077

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Prinsepia utilis Royle, native to the Himalayan region, has a long history of use in traditional medicine for its heat-clearing, detoxification, anti-inflammatory, and analgesic properties. Oils extracted from P. utilis seeds are also used in cooking and cosmetics. With the increasing market demand, this extraction process generates substantial industrial biowastes. Recent studies have found many health benefits with using aqueous extracts of these biowastes, which are also rich in polysaccharides. However, there is limited research related to the reparative effects of the water extracts of P. utilis oil cakes (WEPUOC) on disruptions of the skin barrier function. AIM OF THE STUDY: This study aimed to evaluate the reparative efficacy of WEPUOC in both acute and chronic epidermal permeability barrier disruptions. Furthermore, the study sought to explore the underlying mechanisms involved in repairing the epidermal permeability barrier. MATERIALS AND METHODS: Mouse models with induced epidermal disruptions, employing tape-stripping (TS) and acetone wiping (AC) methods, were used. The subsequent application of WEPUOC (100 mg/mL) was evaluated through various assessments, with a focus on the upregulation of mRNA and protein expression of Corneocyte Envelope (CE) related proteins, lipid synthase-associated proteins, and tight junction proteins. RESULTS: The polysaccharide was the major phytochemicals of WEPUOC and its content was determined as 32.2% by the anthranone-sulfuric acid colorimetric method. WEPUOC significantly reduced transepidermal water loss (TEWL) and improved the damaged epidermal barrier in the model group. Mechanistically, these effects were associated with heightened expression levels of key proteins such as FLG (filaggrin), INV (involucrin), LOR (loricrin), SPT, FASN, HMGCR, Claudins-1, Claudins-5, and ZO-1. CONCLUSIONS: WEPUOC, obtained from the oil cakes of P. utilis, is rich in polysaccharides and exhibits pronounced efficacy in repairing disrupted epidermal barriers through increased expression of critical proteins involved in barrier integrity. Our findings underscore the potential of P. utilis wastes in developing natural cosmetic prototypes for the treatment of diseases characterized by damaged skin barriers, including atopic dermatitis and psoriasis.


Assuntos
Epiderme , Ácido Graxo Sintases , Extratos Vegetais , Proteínas de Junções Íntimas , Regulação para Cima , Animais , Masculino , Camundongos , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/genética , Permeabilidade/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Proteínas de Junções Íntimas/metabolismo , Regulação para Cima/efeitos dos fármacos , Água/química
2.
Aging (Albany NY) ; 16(7): 6588-6612, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38604156

RESUMO

BACKGROUND: Liver progenitor cells (LPCs) are a subpopulation of cells that contribute to liver regeneration, fibrosis and liver cancer initiation under different circumstances. RESULTS: By performing adenoviral-mediated transfection, CCK-8 analyses, F-actin staining, transwell analyses, luciferase reporter analyses and Western blotting, we observed that TGF-ß promoted cytostasis and partial epithelial-mesenchymal transition (EMT) in LPCs. In addition, we confirmed that TGF-ß activated the Smad and MAPK pathways, including the Erk, JNK and p38 MAPK signaling pathways, and revealed that TGFß-Smad signaling induced growth inhibition and partial EMT, whereas TGFß-MAPK signaling had the opposite effects on LPCs. We further found that the activity of Smad and MAPK signaling downstream of TGF-ß was mutually restricted in LPCs. Mechanistically, we found that TGF-ß activated Smad signaling through serine phosphorylation of both the C-terminal and linker regions of Smad2 and 3 in LPCs. Additionally, TGFß-MAPK signaling inhibited the phosphorylation of Smad3 but not Smad2 at the C-terminus, and it reinforced the linker phosphorylation of Smad3 at T179 and S213. We then found that overexpression of mutated Smad3 at linker phosphorylation sites intensifies TGF-ß-induced cytostasis and EMT, mimicking the effects of MAPK inhibition in LPCs, whereas mutation of Smad3 at the C-terminus caused LPCs to blunt TGF-ß-induced cytostasis and partial EMT. CONCLUSION: These results suggested that TGF-ß downstream of Smad3 and MAPK signaling were mutually antagonistic in regulating the viability and partial EMT of LPCs. This antagonism may help LPCs overcome the cytostatic effect of TGF-ß under fibrotic conditions and maintain partial EMT and progenitor phenotypes.


Assuntos
Transição Epitelial-Mesenquimal , Fígado , Sistema de Sinalização das MAP Quinases , Proteína Smad3 , Células-Tronco , Fator de Crescimento Transformador beta , Proteína Smad3/metabolismo , Células-Tronco/metabolismo , Animais , Fator de Crescimento Transformador beta/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Fígado/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fosforilação , Camundongos , Transdução de Sinais
3.
ACS Cent Sci ; 10(3): 717-728, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38559297

RESUMO

Direct inhibitor of tau aggregation has been extensively studied as potential therapeutic agents for Alzheimer's disease. However, the natively unfolded structure of tau complicates the structure-based ligand design, and the relatively large surface areas that mediate tau-tau interactions in aggregation limit the potential for identifying high-affinity ligand binding sites. Herein, a group of isatin-pyrrolidinylpyridine derivative isomers (IPP1-IPP4) were designed and synthesized. They are like different forms of molecular "transformers". These isatin isomers exhibit different inhibitory effects on tau self-aggregation or even possess a depolymerizing effect. Our results revealed for the first time that the direct inhibitor of tau protein aggregation is not only determined by the previously reported conjugated structure, substituent, hydrogen bond donor, etc. but also depends more importantly on the molecular shape. In combination with molecular docking and molecular dynamics simulations, a new inhibition mechanism was proposed: like a "molecular clip", IPP1 could noncovalently bind and fix a tau polypeptide chain at a multipoint to prevent the transition from the "natively unfolded conformation" to the "aggregation competent conformation" before nucleation. At the cellular and animal levels, the effectiveness of the inhibitor of the IPP1 has been confirmed, providing an innovative design strategy as well as a lead compound for Alzheimer's disease drug development.

4.
Cancer Gene Ther ; 31(4): 586-598, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38267623

RESUMO

Glutamate-NMDAR receptors (GRINs) have been reported to influence cancer immunogenicity; however, the relationship between GRIN alterations and the response to immune checkpoint inhibitors (ICIs) has not been determined. This study combined clinical characteristics and mutational profiles from multiple cohorts to form a discovery cohort (n = 901). The aim of this study was to investigate the correlation between the mutation status of the GRIN gene and the response to ICI therapy. Additionally, an independent ICI-treated cohort from the Memorial Sloan Kettering Cancer Center (MSKCC, N = 1513) was used for validation. Furthermore, this study explored the associations between GRIN2A mutations and intrinsic and extrinsic immunity using multiomics analysis. In the discovery cohort, patients with GRIN2A-MUTs had improved clinical outcomes, as indicated by a higher objective response rate (ORR: 36.8% vs 25.8%, P = 0.020), durable clinical benefit (DCB: 55.2% vs 38.7%, P = 0.005), prolonged progression-free survival (PFS: HR = 0.65; 95% CI 0.49 to 0.87; P = 0.003), and increased overall survival (OS: HR = 0.67; 95% CI 0.50 to 0.89; P = 0.006). Similar results were observed in the validation cohort, in which GRIN2A-MUT patients exhibited a significant improvement in overall survival (HR = 0.66; 95% CI = 0.49 to 0.88; P = 0.005; adjusted P = 0.045). Moreover, patients with GRIN2A-MUTs exhibited an increase in tumor mutational burden, high expression of costimulatory molecules, increased activity of antigen-processing machinery, and infiltration of various immune cells. Additionally, gene sets associated with cell cycle regulation and the interferon response were enriched in GRIN2A-mutated tumors. In conclusion, GRIN2A mutation is a novel biomarker associated with a favorable response to ICIs in multiple cancers.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Interferons , Mutação , Biomarcadores Tumorais/genética
5.
Inflammation ; 47(1): 159-172, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37740102

RESUMO

Pyroptosis is an inflammatory programmed cell death (PCD) and is reported to be associated with N6-methyladenosine (m6A) modification. This study aimed to investigate the mechanism of m6A demethylase AlkB homolog 5 (ALKBH5) in pyroptosis in the process of chronic actinic dermatitis (CAD). Changes of m6A-related genes were evaluated between CAD and normal samples using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Human keratinocytes (HaCaT cells) exposed to ultraviolet B (UVB; 10, 20, and 30 mJ/cm2), followed by evaluation of cell proliferation, cell apoptosis, inflammatory cytokines (interleukin (IL)-1ß, IL-18, and tumor necrosis factor (TNF-α)), and pyroptosis-related proteins (gasdermin D (GSDMD), Caspase-1, and Caspase-4). Small interfering RNA (siRNA) targeting ALKBH5 was transfected into HaCaT cells to assess the effect of si-ALKBH5 on CAD. A CAD mice model was induced after exposure to UVB (250 mJ/cm2 per day) to confirm the role of ALKBH5 in CAD. AKKBH5 was highly expressed in CAD patients. UVB also promoted ALKBH5 expression, increased cell apoptosis, and induced the release of inflammatory cytokines (IL-1ß, IL-18, and TNF-α) as well as pyroptosis-related proteins (GSDMD, Caspase-1, and Caspase-4). Silencing ALKBH5 repressed cell apoptosis and suppressed UVB-induced pyroptosis and inflammatory response. Meanwhile, silencing ALKBH5 attenuated UVB-induced skin damage of CAD mice, accompanied with the reduction in expression of inflammatory cytokines and pyroptosis-related proteins. This study helps to further understand the mechanism of ALKBH5 in CAD-induced pyroptosis and provides novel ideas for the research and management of CAD.


Assuntos
Transtornos de Fotossensibilidade , Piroptose , Animais , Humanos , Camundongos , Adenosina , Homólogo AlkB 5 da RNA Desmetilase , Caspase 1 , Citocinas , Interleucina-18 , Interleucina-1beta , RNA Interferente Pequeno , Fator de Necrose Tumoral alfa
6.
Elife ; 122023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099574

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is the second most frequent of the keratinocyte-derived malignancies with actinic keratosis (AK) as a precancerous lesion. To comprehensively delineate the underlying mechanisms for the whole progression from normal skin to AK to invasive cSCC, we performed single-cell RNA sequencing (scRNA-seq) to acquire the transcriptomes of 138,982 cells from 13 samples of six patients including AK, squamous cell carcinoma in situ (SCCIS), cSCC, and their matched normal tissues, covering comprehensive clinical courses of cSCC. We identified diverse cell types, including important subtypes with different gene expression profiles and functions in major keratinocytes. In SCCIS, we discovered the malignant subtypes of basal cells with differential proliferative and migration potential. Differentially expressed genes (DEGs) analysis screened out multiple key driver genes including transcription factors along AK to cSCC progression. Immunohistochemistry (IHC)/immunofluorescence (IF) experiments and single-cell ATAC sequencing (scATAC-seq) data verified the expression changes of these genes. The functional experiments confirmed the important roles of these genes in regulating cell proliferation, apoptosis, migration, and invasion in cSCC tumor. Furthermore, we comprehensively described the tumor microenvironment (TME) landscape and potential keratinocyte-TME crosstalk in cSCC providing theoretical basis for immunotherapy. Together, our findings provide a valuable resource for deciphering the progression from AK to cSCC and identifying potential targets for anticancer treatment of cSCC.


Assuntos
Carcinoma de Células Escamosas , Ceratose Actínica , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/metabolismo , Ceratose Actínica/genética , Ceratose Actínica/metabolismo , Ceratose Actínica/patologia , Neoplasias Cutâneas/patologia , Queratinócitos/metabolismo , Transcriptoma , Microambiente Tumoral/genética
7.
Photodermatol Photoimmunol Photomed ; 39(6): 598-606, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37545106

RESUMO

BACKGROUND: Chronic actinic dermatitis (CAD) is an immune-mediated photodermatosis characterized by a high eosinophil count and total immunoglobulin E (IgE) in the peripheral blood of patients. At present, however, the reasons for their elevation remain unclear. OBJECTIVE: The current study aimed to detect changes in inflammatory cytokines in CAD and explore their role in this disease. METHODS: Enzyme-linked immunosorbent assay and Luminex assay were conducted to measure inflammatory factor levels. Immunohistochemical analysis and quantitative real-time polymerase chain reaction were performed to evaluate the expression levels of interleukin-36γ (IL-36γ), IL-8, chemokine (C-C motif) ligand 17 (CCL17), and CCL18. CCK8 kits were used to assess cell proliferation. Immunofluorescence was used to detect nuclear factor κB (NF-κB) p65 nuclear translocation. Western blot analysis was performed to detect the protein expression level of phosphorylated NF-κB (p-NF-κB) p65. Hematoxylin and eosin and Masson trichrome staining were applied to observe histological changes in a chronic photo-damaged mouse model. RESULTS: Eosinophils, total IgE, IL-36γ, IL-8, tumor necrosis factor α, CCL17, and CCL18 were elevated in CAD. Of note, IL-36γ promoted the proliferation of eosinophilic cells (EOL-1) and the production of IgE in peripheral blood mononuclear cells. IL-36γ also promoted the production of IL-8 and CCL18 in immortalized human keratinocytes (HaCaT cells), while ultraviolet radiation (UVR)-induced IL-36γ via activation of the NF-κB signaling pathway. CONCLUSIONS: IL-36γ was involved in the pathogenesis of CAD and UVR contributed to the production of IL-36γ, which may provide a novel therapeutic target for CAD.


Assuntos
Transtornos de Fotossensibilidade , Raios Ultravioleta , Animais , Camundongos , Humanos , Raios Ultravioleta/efeitos adversos , NF-kappa B/metabolismo , Interleucina-8 , Leucócitos Mononucleares , Interleucinas , Fator de Necrose Tumoral alfa/farmacologia , Imunoglobulina E
8.
J Cosmet Dermatol ; 22(12): 3505-3510, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37464957

RESUMO

BACKGROUND: Although rosacea and seborrheic dermatitis share some symptoms of sensitive skin, whether they respond differently to lactic acid sting and capsaicin tests, common tests for diagnosis of sensitive skin, is unknown. OBJECTIVES: To reveal the cutaneous responses to lactic acid sting (LAST) and capsaicin test (CAT) in females with either rosacea vs. seborrheic dermatitis. METHODS: A total of 60 patients with rosacea, 20 patients with seborrheic dermatitis and 40 normal controls were enrolled in the study. Their skin sensitivity to stimuli were evaluated following topical application of either 10% lactic acid solution or 0.001% capsaicin solution. Transepidermal water loss (TEWL) rates and erythema indexes were also measured on the face. RESULTS: In comparison to normal controls, the positive rate to either LAST or CAT was significantly higher in subjects with rosacea (p < 0.001), but not in that with seborrheic dermatitis. Similarly, individuals with rosacea displayed a higher positive rate to both LAST and CAT than those with seborrheic dermatitis and normal controls (p < 0.001). In parallel, the LAST scores and CAT scores in individuals with rosacea were significantly higher than in that with either seborrheic dermatitis or normal controls (p < 0.001). The baseline TEWL rates and erythema indexes were higher in individual with rosacea than in normal controls (p < 0.001). But the baseline TEWL rates and erythema indexes did not differ significantly between subjects with rosacea and that with seborrheic dermatitis. Moreover, LAST scores and CAT scores correlated positively with TEWL (p < 0.0001). TEWL rates were higher in CAT positive than in CAT negative subjects (p < 0.0001). Finally, erythema index correlated positively with CAT scores (p < 0.0001), but not with LAST scores (p = 0.0842). CONCLUSIONS: Skin responses to LAST and CAT differ between individuals with rosacea and those with seborrheic dermatitis, possibly due to the differences in epidermal permeability barrier and the neurovascular hyperreactivity. The higher LAST and CAT scores, as well as positive rates of both LAST and CAT can be attributable to inferior permeability barrier and the neurovascular hyperreactivity in subjects with rosacea.


Assuntos
Dermatite Seborreica , Rosácea , Feminino , Humanos , Capsaicina/farmacologia , Dermatite Seborreica/diagnóstico , População do Leste Asiático , Eritema/diagnóstico , Ácido Láctico/farmacologia , Rosácea/diagnóstico , Pele , Testes Cutâneos
9.
Contact Dermatitis ; 88(3): 188-200, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36461623

RESUMO

BACKGROUND: Chronic actinic dermatitis (CAD) is an immune-mediated photo-allergic skin disease. In the clinic, the treatment of this disease is hampered by the lack of proper understanding of the skin barrier dysfunction mechanism. OBJECTIVE: To illuminate the mechanism of skin barrier dysfunction in CAD. METHODS: Transcriptome sequencing and protein profiling were used to detect skin barrier injury-related genes. RNA pull down, a promoter-reporter gene assay, and chromatin isolation by RNA purification-sequencing were used to elucidate the effect of WAKMAR2 in skin barrier functionality. RESULTS: Transcriptome sequencing from patient's tissues showed a significantly decreased expression of WAKMAR2. Down-regulation of WAKMAR2 destroyed the keratinocyte barrier. Moreover, WAKMAR2 can directly bind to the c-Fos protein. This novel long non-coding RNA (LncRNA)-protein complexes were targeted to the CLDN1 promotor. Overexpression of WAKMAR2 enhanced the promoter activity of CLDN1, while the addition of AP-1 inhibitor could reverse this phenomenon. Furthermore, our in vivo results suggested that expression of WAKMAR2 was required for the repair of skin damage in mice induced by ultraviolet irradiation. CONCLUSIONS: We identified a crucial LncRNA (WAKMAR2) for the protection of the skin barrier in vitro and in vivo. Mechanically, it can specifically interact with c-Fos protein for the regulation of CLDN1, a finding which could be applied for CAD treatment.


Assuntos
Dermatite Alérgica de Contato , Dermatite Atópica , RNA Longo não Codificante , Animais , Camundongos , Dermatite Alérgica de Contato/metabolismo , Dermatite Atópica/metabolismo , Queratinócitos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/farmacologia , Humanos
10.
Curr Biol ; 32(20): 4386-4396.e3, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36084647

RESUMO

Filopodia are narrow cell extensions involved in various physiological processes. Integrins mediate filopodia adhesion and likely transmit adhesive force to regulate filopodia formation and functions, but the force is extremely weak to study and remains poorly understood. Using integrative tension sensor (ITS), we imaged filopodia adhesive force at the single molecular tension level and investigated the force dynamics and sources. Results show that filopodia integrin tension (FIT) is generated in discrete foci (force nodes) along single filopodia with a spacing of ∼1 µm. Inhibitions of actin polymerization or myosin II activity markedly reduced FIT signals in force nodes at filopodia tips and at filopodia bases, respectively, suggesting differential force sources of FIT in the distal force nodes and proximal ones in filopodia. Using two ITS constructs with different force thresholds for activation, we showed that the molecular force level of FIT is greater at filopodia bases than that at filopodia tips. We also tested the role of vinculin and myosin X in the FIT transmission. With vinculin knockout in cells, filopodia and associated force nodes were still formed normally, suggesting that vinculin is dispensable for the formation of filopodia and force nodes. However, vinculin is indeed required for the transmission of strong FIT (capable of rupturing DNA in a shear conformation), as the strong FIT vanished in filopodia with vinculin knockout. Co-imaging of FIT and myosin X shows no apparent co-localization, demonstrating that myosin X is not directly responsible for generating FIT, despite its prominent role in filopodium elongation.


Assuntos
Integrinas , Pseudópodes , Pseudópodes/metabolismo , Vinculina/metabolismo , Integrinas/metabolismo , Actinas/metabolismo , Adesivos/metabolismo , Miosinas/metabolismo
11.
Biomed Res Int ; 2022: 8230646, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572734

RESUMO

Purpose: Ultraviolet radiation (UVR) is one of the exogenous stimuli increasing melanogenesis. UV light, especially UVB, is also a potent inducer of epidermal cytokine release. This study is aimed at determining the underlying mechanisms by which UVB-induced cytokines in keratinocytes regulate melanin production in vitro. Methods: Expression levels of mRNA for interleukin- (IL-) 1, IL-1ß, IL-6, IL-10, IL-17, and tumor necrosis factor-alpha (TNF-α) were measured using RT-qPCR at various time points after UVB irradiation in C57BL/6 mice and HaCaT cells. NaOH lysis and L-dihydroxyphenylalanine (L-DOPA) oxidation method were used to measure melanin content and tyrosinase (TYR) activity, respectively, in melanoma B16 cells. RT-qPCR and Western blot were used to assess mRNA and protein levels of microphthalmia-associated transcription factor (MITF), TYR, tyrosine-related protein-1 (TRP-1), and tyrosine-related protein-2 (TRP-2) in B16 cells. Finally, expression levels of cyclooxygenase-2 (COX-2) mRNA and stem cell factor (SCF) in HaCaT cells were measured following knockdown of IL-1ß using siRNA (siIL-1ß). Results: UVB irradiation increased IL-1ß mRNA expression levels in both C57BL/6 mice and HaCaT cells. The melanin content, TYR activity, and expression levels of TYR and TRP-1 were all raised when B16 cells were treated with 4 pg/l of IL-1. Moreover, IL-1ß also upregulated the expression levels of SCF and COX-2 in nonirradiated HaCaT cells. Conversely, knockdown of IL-1ß attenuated UVB irradiation-induced upregulation of SCF and COX-2 expression in keratinocytes. Conclusions: UVB-induced melanogenesis is mediated in part by IL-1ß, leading to upregulation of the TYR/TRP1 expression in melanoma B16 cells. IL-1ß can also stimulate the expression of COX-2 and SCF in HaCaT cells, which in turn increase melanin synthesis in melanocytes. These results suggest that anti-inflammatory approaches could possibly mitigate UVB-induced hyperpigmentation.


Assuntos
Interleucina-1beta/metabolismo , Melanoma , Raios Ultravioleta , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Interferon Tipo I , Queratinócitos/metabolismo , Melaninas , Melanócitos/metabolismo , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Proteínas da Gravidez , RNA Mensageiro/genética , Fator de Células-Tronco , Tirosina/metabolismo , Raios Ultravioleta/efeitos adversos
12.
Zhongguo Gu Shang ; 35(4): 379-86, 2022 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-35485158

RESUMO

OBJECTIVE: To investigate the effect of RUNX2 gene overexpression vector modified exosomes derived from bone marrow mesenchymal stem cells (BMSCs) combined with calcium carbonate scaffold system in bone defect. METHODS: Rabbit BMSCs were used as the research object, and BMSCs were identified by flow cytometry. Construct RUNX2 gene overexpression vector, transfect BMSCs with lentivirus, and collect exosomes by ultracentrifugation. The morphology of exosomes was observed by transmission electron microscope, the expression of exosome marker CD63 was detected by Western blot, and the calcium carbonate scaffold was constructed by three chamber parallel automatic temperature control reaction system. According to whether the RUNX2 gene overexpression vector was transfected or not, the complex of BMSCs and calcium carbonate scaffold was divided into three groups, namely BMSCs group, RUNX2 overexpression group and exosome group. The osteogenic differentiation of BMSCs was detected by oil red O staining and RT-PCR. There were 9 clean adult healthy male New Zealand white rabbits, aged (12.97±1.21) months, with a body weight of (19.3±3.6) kg, with 3 rabbits in each group. The animal model of skull defect was constructed by surgical method, and the repair of bone defect was evaluated by imaging, he staining and Masson staining. RESULTS: The results of flow cytometry showed that the expression of CD29 protein, CD44 protein, CD11b protein and CD45 protein on the surface of BMSCs were 99.5%, 100%, 0.1% and 0.1%, respectively. Transmission electron microscopy showed that the exosomes were bilayer vesicles with a diameter of 50 to 150 nm. Western blot showed that the molecular marker CD63 of exosomes was positive. Oil red O staining showed that the osteogenic differentiation of BMSCs in exosome group was significantly higher than that in RUNX2 overexpression group and BMSCs group. The results of RT-PCR showed that the relative expressions of RUNX2, BMP-2 and ALP mRNA in BMSCs in exosome group were significantly higher than those in RUNX2 overexpression group and BMSCs group (P<0.05). The imaging results showed that the repair effect of skull defect in exosome group was better than that in RUNX2 overexpression group. HE staining and Masson staining showed that the repair effect of skull defect in exosome group was better than that in RUNX2 overexpression group (P<0.05). MSCs in exosome group was significantly higher than that in RUNX2 overexpression group and BMSCs group. The results of RT-PCR showed that the relative expressions of RUNX2, BMP-2 and ALP mRNA in BMSCs in exosome group were significantly higher than those in RUNX2 overexpression group and BMSCs group(P<0.05). The imaging results showed that the repair effect of skull defect in exosome group was better than that in RUNX2 overexpression group. HE staining and Masson staining showed that the repair effect of skull defect in exosome group was better than that in RUNX2 overexpression group(P<0.05). CONCLUSION: Compared with RUNX2 gene overexpression vector transfection, extraction of exosomes directly can promote the differentiation of BMSCs into osteoblasts more efficiently, and the combination with calcium carbonate scaffold can better promote the healing of bone defects. So as to provide new ideas and methods for the clinical treatment of bone defects.


Assuntos
Exossomos , Animais , Carbonato de Cálcio/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Exossomos/genética , Exossomos/metabolismo , Humanos , Masculino , Osteogênese/genética , RNA Mensageiro/metabolismo , Coelhos
13.
Chem Sci ; 13(5): 1428-1439, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35222927

RESUMO

Metallodrug resistance has attracted a great deal of attention in cancer treatment. According to the cisplatin (cis-Pt) anticancer mechanism, a new strategy to overcome cis-Pt resistance through mitochondrial dysfunction is proposed. Two mitochondria-targeted aggregation-induced emission fluorogens (AIEgens) were first synthesized, named DP-PPh3 and TPE-PPh3, which showed superior capacities to overcome the cis-Pt resistance of lung cancer cells (A549R) by the alteration of drug metabolism (up-regulation of influx CTR1 and down-regulation of efflux MRP2) and blockage of autophagic flux (failure of the degradation of autophagosomes). This study is the first time that AIEgens are utilized in the treatment of cis-Pt resistant cancer cells. Moreover, the underlying molecular mechanism was fully revealed. Triphenylphosphonium (PPh3)-decorated AIEgens DP-PPh3 and TPE-PPh3 not only successfully realized aggregation and the imaging of mitochondria in A549R cells, but also activated cytotoxicity towards A549R cells. DP-PPh3 and TPE-PPh3 could induce ROS production, disrupt the mitochondrial structure, and impair mitochondrial and glycolytic metabolism. Furthermore, the anticancer efficacy of these drugs was demonstrated in 3D multicellular tumor spheroids (MCTSs) of A549R cells in vitro and in tumor-bearing nude mice in vivo. This AIE-PPh3 strategy not only promoted cytotoxicity towards cancer cells but also provided a new pathway for the treatment of metallodrug resistance.

14.
Biomater Sci ; 10(5): 1267-1280, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35080534

RESUMO

The instinctive protective stress responses of tumor cells hamper low-temperature photothermal therapy (LTPTT), resulting in tumor recurrence and metastasis. The rapid blood clearance and low-efficiency tumor enrichment of nanomedicines also decrease the efficacy of LTPTT. In this study, we fabricated coassembled photothermal agents (indocyanine green, ICG) and autophagy inhibitors (chloroquine, CQ) and red blood cell and cancer cell hybrid membrane (RCm)-camouflaged ICGCQ@RCm nanoparticles (ICGCQ@RCm NPs) to enhance tumor LTPTT. The ICGCQ@RCm NPs exhibited prolonged blood drug circulation and markedly enhanced drug accumulation in tumor tissues. The ICGCQ@RCm NPs reduced the thermal tolerance of tumor cells to sensitize ICG-mediated LTPTT by inhibiting protective autophagy. The ICGCQ@RCm NPs exerted strong immunogenic cell death (ICD) after efficient LTPTT to activate antitumor immunity. In addition, ICGCQ@RCms optimized the therapeutic efficacy by imaging-guided LTPTT, taking advantage of the near-infrared (NIR) fluorescence of ICG. Consequently, the ICGCQ@RCm NPs effectively inhibited tumors under mild LTPTT, significantly suppressed tumor metastasis and prolonged the survival time of tumor-bearing mice. Furthermore, the ICGCQ@RCm NPs showed high biosafety in vitro and in vivo. The ICGCQ@RCm NPs demonstrated tumor-targeting and imaging-guided autophagy inhibition-sensitized LTPTT using two Food and Drug Administration (FDA)-approved drugs, which have great potential for clinical application.


Assuntos
Hipertermia Induzida , Nanopartículas , Animais , Autofagia , Biomimética , Linhagem Celular Tumoral , Hipertermia Induzida/métodos , Camundongos , Nanopartículas/uso terapêutico , Terapia Fototérmica
15.
J Inorg Biochem ; 226: 111653, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740039

RESUMO

Theranostic anticancer agents with dual functions of diagnosis and therapy are in highly demand for breast cancer. Herein, a triphenylphosphonium (TPP)-decorated aggregation-induced emission (AIE)-based Pt(IV) prodrug ACPt was developed, which exhibited superior anticancer performance with novel anticancer mechanism of dual modulation of apoptosis and autophagy inhibition. The experimental data showed that ACPt induced increased reactive oxygen species (ROS), and decreased mitochondrial membrane potential (MMP). The morphology and function of mitochondria were also severely damaged and ACPt showed strong inhibition to both mitochondrial and glycolytic bioenergetics. Moreover, DNA damage and cell cycle arrest in the S-phase were also observed after the ACPt treatment, eventually leading to the apoptosis and autophagy inhibition of cancer cells. Furthermore, ACPt also indicated excellent anti-proliferation activity in 3D multicellular tumor spheroids (MCTSs), suggesting the potential to inhibit solid tumors in vivo. Our observation demonstrated that ACPt could serve as a promising anticancer theranostic agent toward breast cancers for prodrug activation monitoring and image-guided chemotherapy.


Assuntos
Antineoplásicos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama , Complexos de Coordenação , Sistemas de Liberação de Medicamentos , Mitocôndrias/metabolismo , Platina , Pró-Fármacos , Células A549 , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/farmacocinética , Complexos de Coordenação/farmacologia , Feminino , Células Hep G2 , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Platina/química , Platina/farmacocinética , Platina/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia
16.
ACS Nano ; 16(1): 1409-1420, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34920667

RESUMO

In this study, two types of the fluoroamphiphile analogs were synthesized and self-assembled into the "core-shell" micellar nanocarriers for intracellular delivery and organelle targeting. Using the fluorescent dyes or vitamin E succinate as the cargo, the drug delivery and targeting capabilities of the fluoroamphiphiles and their micelles were evaluated in the cell lines, tumor cell spheroids, and tumor-bearing mice. The "core-fluorinated" micelles exhibited favorable physicochemical properties and improved the cellular uptake of the cargo by around 20 times compared to their "shell-fluorinated" counterparts. The results also indicated that the core-fluorinated micelles underwent an efficient clathrin-mediated endocytosis and a rapid endosomal escape thereafter. Interestingly, the internalized fluoroamphiphile micelles preferentially accumulated in mitochondria, by which the efficacy of the loaded vitamin E succinate was boosted both in vitro and in vivo. Unlike the popularly used cationic mitochondrial targeting ligands, as a charge-neutral nanocarrier, the fluoroamphiphiles' mitochondrial targeting was potential independent. The mechanism study suggested that the strong binding affinity with the phospholipids, particularly the cardiolipin, played an important role in the fluoroamphiphiles' mitochondrial targeting. These charge-neutral fluoroamphiphiles might have great potential to be a simple and reliable tool for intracellular drug delivery and mitochondrial targeting.


Assuntos
Micelas , alfa-Tocoferol , Camundongos , Animais , Liberação Controlada de Fármacos , alfa-Tocoferol/química , Sistemas de Liberação de Medicamentos/métodos , Mitocôndrias , Portadores de Fármacos/química , Linhagem Celular Tumoral
17.
Zhongguo Gu Shang ; 34(10): 978-84, 2021 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-34726029

RESUMO

OBJECTIVE: To explore the effects of siRNA hsa-circ-0000885 modified bone marrow mesenchymal stem cells (BMSCs) on osteogenic differentiation, cell proliferation and apoptosis in order to provide new ideas and methods for the clinical treatment of osteoporosis (OP). METHODS: From September 2018 to February 2020, 13 patients with osteoporosis admitted to our hospital were selected as the research objects, including 11 females and 2 males, with an age of (65.45±10.77) years old. After obtaining the informed consent of patients, peripheral blood tissues were extracted. Then the expression level of cir-cRNA in peripheral blood mononuclear cells(PBMC) was detected by circ RNA chip. The expression of circ RNA was silenced by siRNA technology. The BMSCs were transfected with lentivirus. According to the siRNA interference plasmid hsa-circ-0000885, the cells were divided into the blank group, the empty vector group and the siRNA interference group. After 72 hours of treatment, the cell cycle was detected by flow cytometry, the apoptosis level was detected by AV-PI kit, and the osteogenic differentiation ability of BMSCs was detected by ALP staining. RESULTS: The expression of hsa-circ-0000885 in PBMC of patients with osteoporosis was significantly higher than that of healthy controls (t=2.119, P<0.05). ALP staining showed that siR-NA hsa-circ-0000885 could promote the osteogenic differentiation of BMSCs, which was obviously too much in the blank group and blank plasmid group (F=9.132, q=2.995, 2.897;P=0.009, 0.012<0.05). The results of CCK-8 showed that siRNA hsa-circ-0000885 could promote the proliferation of BMSCs, which was significantly higher than that of the blank group and blank plasmid group (F=9.881, q=2.457, 2.904;P=0.032, 0.016<0.05). The results of AV-PI showed that the apoptosis rate of siRNA interference group was significantly lower than that of blank group and blank plasmid group(F=10.208;q=2.885, 3.001; P=0.019, 0.011<0.05). CONCLUSION: The lentivirus mediated siRNA hsa-circ-0000885 plasmid transfected into BMSCs and osteoclast co culture system can promote cell proliferation, inhibit apoptosis and promote osteogenic differentiation of BMSCs, which can be used as a potential therapeutic target for OP patients.


Assuntos
Leucócitos Mononucleares , Células-Tronco Mesenquimais , Idoso , Apoptose/genética , Diferenciação Celular , Proliferação de Células/genética , Células Cultivadas , Técnicas de Cocultura , Feminino , Humanos , Lentivirus , Pessoa de Meia-Idade , Osteoclastos , Osteogênese/genética , RNA Interferente Pequeno/genética , Transfecção
18.
ACS Chem Neurosci ; 12(21): 4162-4174, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34649422

RESUMO

A molecular inhibitor of tau protein aggregation offers an attractive therapeutic possibility as disease-modifying treatment of Alzheimer's disease. However, the ineffectiveness as well as adjoint toxicity due to superficial understanding of the inhibition mechanism has hindered drug development. Conventional approaches for screening drug ligands rely on compatible docking with the well-defined structure of a protein receptor. Therefore, the design of tau aggregation inhibitors has been inevitably hindered by the unstructured, highly dynamic nature of the tau protein. This paper suggested a new strategy for reducing tau aggregation through a dynamic process of conformational isomerization. A group of glucose gallate derivatives were selected as tau aggregation inhibitors. These star-shaped molecules have a biocompatible glucose core surrounded by several gallic acid polyphenol arms, which can bind to peptide chains at different sites, probably through hydrogen bonds and π-π stacking. Theoretically, by elevating the saddle point on the potential energy surfaces (PES) of proteins, the barrier in the dynamic pathway of peptide isomerization, glucose gallates effectively inhibit tau aggregation through a dynamic mechanism. A tau cell model based on human neurons was constructed. For the first time, we confirmed that the moderate thermodynamic binding of the molecular ligand to the tau peptide chain can not only prevent the isomerization of the peptide chain leading to aggregation but also avoid toxicity resulting from the dissociation of tau from microtubules.


Assuntos
Doença de Alzheimer , Proteínas tau , Glucose , Humanos , Ligantes , Neurônios
19.
Adv Healthc Mater ; 10(19): e2100770, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34190424

RESUMO

The antioxidant defense system in malignant cells, which involves antioxidant enzymes and antioxidant molecules, is an innate barrier to photodynamic therapy (PDT). Because of the complexity of the endogenous antioxidant mechanisms of these cells, simply inhibiting individual antioxidant pathways has a limited effect on improving the lethality of ROS. To enhance the efficacy of PDT for tumor treatment, a versatile nanoparticle (NP)-based drug is developed, which the authors call PZB NP, containing the glutathione inhibitor l-buthionine sulfoximine (BSO) and the heme oxygenase 1 (HO-1) inhibitor protoporphyrin zinc(II) (ZnPP) to suppress the innate antioxidant defense system of cancer cells in a two-pronged manner. BSO reduces intracellular glutathione levels to minimize ROS elimination and protein protection during PDT, and ZnPP inhibits the ROS-stimulated upregulation of the antioxidant HO-1, thus preventing ROS removal by cells after PDT. Thus, BSO and ZnPP synergistically suppress the antioxidant defense systems of cancer cells both during and after protoporphyrin-IX-mediated PDT in a two-pronged manner, resulting in tumor cell death through excess oxidative pressure. The results demonstrate that the construction of nanodrugs having dual antioxidation defense suppression properties is a promising route for the development of highly efficient ROS-based therapies.


Assuntos
Glutationa , Fotoquimioterapia , Antioxidantes/farmacologia , Butionina Sulfoximina , Heme Oxigenase-1
20.
J Cosmet Dermatol ; 20(11): 3666-3671, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33655687

RESUMO

BACKGROUND: Rosacea is a common chronic inflammatory dermatosis with uncertainty of etiology. Although clinical features and risk factors of the disease in Caucasians have been reported, this information in Chinese is largely unavailable. AIMS: To analyze the clinical features and associated risk factors of rosacea in Chinese. METHODS: A questionnaire was given to outpatients with rosacea who visited the dermatology department of the first affiliated hospital of Kunming Medical University from June 2018 to March 2019. Analyses included demographic characteristics of subjects, clinical characteristics, and risk factors of rosacea. RESULTS: A total of 254 outpatients completed the questionnaire. The ratio of female to male was 5.68:1.00. The mean age at onset was 31.18 ± 10.23 years. Erythematotelangiectatic subtype accounted for 51.60%, while 39% of the subjects were of papulopustular subtype. The rest were phymatous type (9.40%). Subjects with flushing, persistent facial erythema, and telangiectasia accounted for 91.73%, 90.55%, and 83.07%, respectively. One hundred and thirteen subjects (44.49%) had papules or pustules, and 24 subjects (9.40%) were with phymatous changes. The most commonly involved sites were the cheeks (93.31%), followed by the nose (82.68%), the perioral area (61.42%), and the forehead (51.97%). The clinical symptoms included burning (93.70%), dryness (90.55%), and itching (75.59%). The main risk factors were sun exposure (90.94%), temperature change (87.40%), etc. Fifty-one (20.08%) patients had comorbidities. CONCLUSIONS: Rosacea mainly affects young females. The common signs and symptoms include flushing, persistent facial erythema, and burning. Sun exposure and temperature changes are the common risk factors. Patients can have comorbidities of systemic disorders.


Assuntos
Dermatite , Rosácea , China/epidemiologia , Eritema , Feminino , Humanos , Masculino , Rosácea/epidemiologia , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA