Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39131310

RESUMO

Inositol phosphates are critical signaling messengers involved in a wide range of biological pathways in which inositol polyphosphate multikinase (IPMK) functions as a rate-limiting enzyme for inositol polyphosphate metabolism. IPMK has been implicated in cellular metabolism, but its function at the systemic level is still poorly understood. Since skeletal muscle is a major contributor to energy homeostasis, we have developed a mouse model in which skeletal muscle IPMK is specifically deleted and examined how a loss of IPMK affects whole-body metabolism. Here, we report that mice in which IPMK knockout is deleted, specifically in the skeletal muscle, displayed an increased body weight, disrupted glucose tolerance, and reduced exercise tolerance under the normal diet. Moreover, these changes were associated with an increased accumulation of triglyceride in skeletal muscle. Furthermore, we have confirmed that a loss of IPMK led to reduced beta-oxidation, increased triglyceride accumulation, and impaired insulin response in IPMK-deficient muscle cells. Thus, our results suggest that IPMK mediates the whole-body metabolism via regulating muscle metabolism and may be potentially targeted for the treatment of metabolic syndromes.

2.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743190

RESUMO

All cells rely on nutrients to supply energy and carbon building blocks to support cellular processes. Over time, eukaryotes have developed increasingly complex systems to integrate information about available nutrients with the internal state of energy stores to activate the necessary processes to meet the immediate and ongoing needs of the cell. One such system is the network of soluble and membrane-associated inositol phosphates that coordinate the cellular responses to nutrient uptake and utilization from growth factor signaling to energy homeostasis. In this review, we discuss the coordinated interactions of the inositol polyphosphates, inositol pyrophosphates, and phosphoinositides in major metabolic signaling pathways to illustrate the central importance of the inositol phosphate signaling network in nutrient responses.


Assuntos
Fosfatos de Inositol , Polifosfatos , Transporte Biológico , Homeostase , Fosfatos de Inositol/metabolismo , Polifosfatos/metabolismo , Transdução de Sinais
3.
FASEB J ; 33(12): 14137-14146, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31657647

RESUMO

Metformin has been shown to alter cell adhesion protein expression, which is thought to play a role in its observed antitumor properties. We found that metformin treatment down-regulated integrin ß1 concomitant with the loss of inositol polyphosphate multikinase (IPMK) in murine myocytes, adipocytes, and hepatocytes. To determine if IPMK was upstream of integrin ß1 expression, we examined IPMK-/- mouse embryonic fibroblast cells and found that integrins ß1 and ß3 gene expression was reduced by half, relative to wild-type cells, whereas focal adhesion kinase (FAK) activity and Rho/Rac/Cdc42 protein levels were increased, resulting in migration defects. Using nanonet force microscopy, we determined that cell:extracellular matrix adhesion and cell contractility forces were decreased, confirming the functional relevance of integrin and Rho protein dysregulation. Pharmacological studies showed that inhibition of both FAK1 and proline-rich tyrosine kinase 2 partially restored integrin ß1 expression, suggesting negative regulation of integrin ß1 by FAK. Together our data indicate that IPMK participates in the regulation of cell migration and provides a potential link between metformin and wound healing impairment.-Tu-Sekine, B., Padhi, A., Jin, S., Kalyan, S., Singh, K., Apperson, M., Kapania, R., Hur, S. C., Nain, A., Kim, S. F. Inositol polyphosphate multikinase is a metformin target that regulates cell migration.


Assuntos
Metformina/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Movimento Celular , Regulação para Baixo , Fibroblastos , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Integrina beta1/genética , Integrina beta1/metabolismo , Camundongos , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/genética
4.
Prostate ; 76(13): 1203-17, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27273171

RESUMO

BACKGROUND: Prostate-specific antigen (PSA) is an important prostate cancer biomarker. It is also a protease expressed at high concentrations by the normal and malignant prostate. PSA is secreted as a zymogen (proPSA) with an inhibitory prodomain that must be removed for full activity. ProPSA variants, assumed to be inactive, are found in the blood of prostate cancer patients, and are indicative of poor clinical outcome. Despite the abundance of clinical reports, our understanding of PSA's enzymology is limited, in part due to a lack of appropriate experimental systems. We sought to develop a series of PSA-derived mutants that would help to enhance our understanding of the gene. METHODS: Sixteen rPSA variants were generated and characterized by a variety of biochemical methods. RESULTS: The wildtype cDNA (WT) provided the template for generating a panel of recombinants. These included variants that abolished removal of the prodomain (R24A), disabled its enzymatic activity (S213A), and/or facilitated a cell-based conversion to the active conformation (FR). The purified variants' proteolytic activity was examined using a fluorogenic substrate, known PSA-cleavable proteins, and physiologically relevant inhibitors. Upon demonstrating our successful generation and purification of the PSA variants, we characterized proPSA activity, describing cleavage of synthetic and biologic substrates, but not serum protease inhibitors. This finding was exploited in the development of a self-activating mutant (PSA_QY) that exhibited the greatest enzymatic activity of all the variants. CONCLUSIONS: The system described herein will prove useful for varied applications. ProPSA is partially functional with relatively high activity compared to the mature enzyme. In demonstrating the zymogen's intrinsic activity, we suggest that the proPSA in prostate cancer patient serum is not inert. This may have implications for our understanding of the disease. Prostate 76:1203-1217, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Variação Genética/fisiologia , Mutação/fisiologia , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Humanos , Masculino , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Adv Biol Regul ; 57: 147-52, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25446883

RESUMO

The synaptic vesicle (SV) cycle includes exocytosis of vesicles loaded with a neurotransmitter such as glutamate, coordinated recovery of SVs by endocytosis, refilling of vesicles, and subsequent release of the refilled vesicles from the presynaptic bouton. SV exocytosis is tightly linked with endocytosis, and variations in the number of vesicles, and/or defects in the refilling of SVs, will affect the amount of neurotransmitter available for release (Sudhof, 2004). There is increasing interest in the roles synaptic vesicle lipids and lipid metabolizing enzymes play in this recycling. Initial emphasis was placed on the role of polyphosphoinositides in SV cycling as outlined in a number of reviews (Lim and Wenk, 2009; Martin, 2012; Puchkov and Haucke, 2013; Rohrbough and Broadie, 2005). Other lipids are now recognized to also play critical roles. For example, PLD1 (Humeau et al., 2001; Rohrbough and Broadie, 2005) and some DGKs (Miller et al., 1999; Nurrish et al., 1999) play roles in neurotransmission which is consistent with the critical roles for phosphatidic acid (PtdOH) and diacylglycerol (DAG) in the regulation of SV exo/endocytosis (Cremona et al., 1999; Exton, 1994; Huttner and Schmidt, 2000; Lim and Wenk, 2009; Puchkov and Haucke, 2013; Rohrbough and Broadie, 2005). PLD generates phosphatidic acid by catalyzing the hydrolysis of phosphatidylcholine (PtdCho) and in some systems this PtdOH is de-phosphorylated to generate DAG. In contrast, DGK catalyzes the phosphorylation of DAG thereby converting it into PtdOH. While both enzymes are poised to regulate the levels of DAG and PtdOH, therefore, they both lead to the generation of PtdOH and could have opposite effects on DAG levels. This is particularly important for SV cycling as PtdOH and DAG are both needed for evoked exocytosis (Lim and Wenk, 2009; Puchkov and Haucke, 2013; Rohrbough and Broadie, 2005). Two lipids and their involved metabolic enzymes, two sphingolipids have also been implicated in exocytosis: sphingosine (Camoletto et al., 2009; Chan et al., 2012; Chan and Sieburth, 2012; Darios et al., 2009; Kanno et al., 2010; Rohrbough et al., 2004) and sphingosine-1-phosphate (Chan, Hu, 2012; Chan and Sieburth, 2012; Kanno et al., 2010). Finally a number of reports have focused on the somewhat less well studies roles of sphingolipids and cholesterol in SV cycling. In this report, we review the recent understanding of the roles PLDs, DGKs, and DAG lipases, as well as sphingolipids and cholesterol play in synaptic vesicle cycling.


Assuntos
Diacilglicerol Quinase/metabolismo , Diglicerídeos/metabolismo , Lipase Lipoproteica/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Colesterol/genética , Colesterol/metabolismo , Diacilglicerol Quinase/genética , Diglicerídeos/genética , Endocitose/fisiologia , Humanos , Lipase Lipoproteica/genética , Ácidos Fosfatídicos/genética , Fosfolipase D/genética , Esfingolipídeos/genética , Esfingolipídeos/metabolismo , Vesículas Sinápticas/genética
6.
Elife ; 2: e00691, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23853711

RESUMO

The tumor suppressor PIP3 phosphatase PTEN is phosphorylated on four clustered Ser/Thr on its C-terminal tail (aa 380-385) and these phosphorylations are proposed to induce a reduction in PTEN's plasma membrane recruitment. How these phosphorylations affect the structure and enzymatic function of PTEN is poorly understood. To gain insight into the mechanistic basis of PTEN regulation by phosphorylation, we generated semisynthetic site-specifically tetra-phosphorylated PTEN using expressed protein ligation. By employing a combination of biophysical and enzymatic approaches, we have found that purified tail-phosphorylated PTEN relative to its unphosphorylated counterpart shows reduced catalytic activity and membrane affinity and undergoes conformational compaction likely involving an intramolecular interaction between its C-tail and the C2 domain. Our results suggest that there is a competition between membrane phospholipids and PTEN phospho-tail for binding to the C2 domain. These findings reveal a key aspect of PTEN's regulation and suggest pharmacologic approaches for direct PTEN activation. DOI:http://dx.doi.org/10.7554/eLife.00691.001.


Assuntos
PTEN Fosfo-Hidrolase/química , Fosfatase Alcalina/metabolismo , Sequência de Aminoácidos , Cromatografia por Troca Iônica , Dados de Sequência Molecular , Fosforilação , Conformação Proteica , Proteólise , Espalhamento a Baixo Ângulo
7.
Adv Biol Regul ; 53(1): 118-26, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23266086

RESUMO

Given the well-established roles of diacylglycerol (DAG) and phosphatidic acid (PtdOH) in a variety of signaling cascades, it is not surprising that there is an increasing interest in understanding their physiological roles and mechanisms that regulate their cellular levels. One class of enzymes capable of coordinately regulating the levels of these two lipids is the diacylglycerol kinases (DGKs). These enzymes catalyze the transfer of the γ-phosphate of ATP to the hydroxyl group of DAG, which generates PtdOH while reducing DAG. As these enzymes reciprocally modulate the relative levels of these two signaling lipids, it is essential to understand the regulation and roles of these enzymes in various tissues. One system where these enzymes play important roles is the nervous system. Of the ten mammalian DGKs, eight of them are readily detected in the mammalian central nervous system (CNS): DGK-α, DGK-ß, DGK-γ, DGK-η, DGK-ζ, DGK-ι, DGK-ε, and DGK-θ. Despite the increasing interest in DGKs, little is known about their regulation. We have focused some attention on understanding the enzymology and regulation of one of these DGK isoforms, DGK-θ. We recently showed that DGK-θ is regulated by an accessory protein containing polybasic regions. We now report that this accessory protein is required for the previously reported broadening of the pH profile observed in cell lysates in response to phosphatidylserine (PtdSer). Our data further reveal DGK-θ is regulated by magnesium and zinc, and sensitive to the known DGK inhibitor R599022. These data outline new parameters involved in regulating DGK-θ.


Assuntos
Sistema Nervoso Central/enzimologia , Diacilglicerol Quinase/metabolismo , Diglicerídeos/metabolismo , Isoenzimas/metabolismo , Neurônios/enzimologia , Ácidos Fosfatídicos/metabolismo , Animais , Cátions Bivalentes , Linhagem Celular Tumoral , Sistema Nervoso Central/citologia , Sistema Nervoso Central/efeitos dos fármacos , Diacilglicerol Quinase/antagonistas & inibidores , Diacilglicerol Quinase/genética , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Magnésio/metabolismo , Camundongos , Células NIH 3T3 , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fosfatidilserinas/farmacologia , Pirimidinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tiazóis/farmacologia , Zinco/metabolismo
8.
Eur J Med Chem ; 44(10): 4169-78, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19524330

RESUMO

Structural modification of the frontline antitubercular isonicotinic acid hydrazide (INH) provides lipophilic adaptations (3-46) of the drug in which the hydrazine moiety of the parent compound has been chemically blocked from the deactivating process of N(2)-acetylation by N-arylaminoacetyl transferases. As a class, these compounds show high levels of activity against Mycobacterium tuberculosis in vitro and in tuberculosis-infected macrophages. They provide strong protection in tuberculosis-infected mice and have low toxicity. With some representatives of this class achieving early peak plasma concentrations approximately three orders of magnitude above minimum inhibitory concentration, they may serve as tools for improving our understanding of INH-based treatment modalities, particularly for those patients chronically underdosed in conventional INH therapy.


Assuntos
Antituberculosos/química , Antituberculosos/uso terapêutico , Isoniazida/química , Isoniazida/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Bases de Schiff/química , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/farmacologia , Feminino , Isoniazida/análogos & derivados , Isoniazida/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
9.
Front Biosci ; 13: 590-7, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17981572

RESUMO

The diacylglycerol-kinases are a family of related lipid kinases. There are currently 10 known isoforms of diacylglycerol kinases that are categorized into five groups based on similarities in their primary sequence. All of these enzymes catalyze the transfer of the gamma-phosphate of ATP to one lipid second messenger, diacylglycerol, thereby generating another lipid second messenger, phosphatidic acid. As a result, they are uniquely poised to regulate the relative levels of these two key second messengers. These enzymes show considerable diversity in their cellular and sub-cellular distribution which suggests a great diversity in physiological functions. One sub-cellular compartment that is receiving a considerable attention is the nucleus. A number of DGKs have been found to reside in, or translocate to the nucleus in response to agonists. In this review we focus primarily on the nuclear localization, modulation of intrinsic enzymatic activity, and the potential physiological roles of the six diacylglycerol kinases that have been found in the nucleus: DGK-alpha, DGK-gamma, DGK-delta, DGK-zeta, DGK-iota, and DGK-theta.


Assuntos
Núcleo Celular/metabolismo , Diacilglicerol Quinase/metabolismo , Regulação Enzimológica da Expressão Gênica , Trifosfato de Adenosina/metabolismo , Animais , Células COS , Catálise , Chlorocebus aethiops , Diacilglicerol Quinase/fisiologia , Humanos , Lipídeos/química , Camundongos , Modelos Biológicos , Matriz Nuclear/metabolismo , Isoformas de Proteínas , Transdução de Sinais
10.
Biochemistry ; 44(30): 10199-207, 2005 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-16042397

RESUMO

Diacylglycerol kinases (DGKs) catalyze the ATP-dependent phosphorylation of diacylglycerols to generate phosphatidic acid and have been investigated in prokaryotic and eukaryotic organisms. Recently, a protein that is significantly similar to human DGK-theta, DGKA, was identified in Dictyostelium discoideum. It has been shown to possess DGK activity when assayed using a medium-chain diacylglycerol, 1,2-dioctanoyl-sn-glycerol (DiC8). A complete understanding of DGK catalytic and regulatory mechanisms, as well as physiological roles, requires an understanding of its biochemical and kinetic properties. This report presents an analysis of these properties for DGKA. The enzyme catalyzes the phosphorylation of DiC8, and another medium-chain DAG, DiC6 (1,2-dihexanoyl-sn-glycerol), in a Michaelis-Menten manner. Interestingly, the kinetics of DGKA using physiologically relevant long-chain DAGs was dependent on substrate surface concentration and the detergent that was used. DGKA displayed Michaelis-Menten kinetics with respect to bulk substrate concentration (1,2-dioleoyl-sn-glycerol) in octyl glucoside mixed micelles when the surface substrate concentration was at or below 3.5 mol %. At higher surface concentrations, however, there was a sigmoidal relationship between the initial velocity and bulk substrate concentration. In contrast, DGKA displayed sigmoidal kinetics with respect to bulk substrate concentrations at all surface concentrations in Triton X-100 mixed micelles. Finally, we show the catalytic activity of DGKA was significantly enhanced by phosphatidylserine (PS) and phosphatidic acid (PA).


Assuntos
Diacilglicerol Quinase/química , Dictyostelium/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/química , Catálise , Diacilglicerol Quinase/metabolismo , Dictyostelium/metabolismo , Diglicerídeos/metabolismo , Cinética , Lipídeos/química , Ácidos Fosfatídicos/metabolismo , Fosfatidilcolinas/metabolismo , Fosforilação , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA