Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Stem Cells Transl Med ; 13(6): 582-592, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38560893

RESUMO

Retinal degenerative diseases are a major cause of blindness involving the dysfunction of photoreceptors, retinal pigmented epithelium (RPE), or both. A promising treatment approach involves replacing these cells via surgical transplantation, and previous work has shown that cell delivery scaffolds are vital to ensure sufficient cell survival. Thus, identifying scaffold properties that are conducive to cell viability and maturation (such as suitable material and mechanical properties) is critical to ensuring a successful treatment approach. In this study, we investigated the effect of scaffold stiffness on human RPE attachment, survival, and differentiation, comparing immortalized (ARPE-19) and stem cell-derived RPE (iRPE) cells. Polydimethylsiloxane was used as a model polymer substrate, and varying stiffness (~12 to 800 kPa) was achieved by modulating the cross-link-to-base ratio. Post-attachment changes in gene and protein expression were assessed using qPCR and immunocytochemistry. We found that while ARPE-19 and iRPE exhibited significant differences in morphology and expression of RPE markers, substrate stiffness did not have a substantial impact on cell growth or maturation for either cell type. These results highlight the differences in expression between immortalized and iPSC-derived RPE cells, and also suggest that stiffnesses in this range (~12-800 kPa) may not result in significant differences in RPE growth and maturation, an important consideration in scaffold design.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Epitélio Pigmentado da Retina , Alicerces Teciduais , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Alicerces Teciduais/química , Dimetilpolisiloxanos/química , Sobrevivência Celular , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Linhagem Celular , Proliferação de Células
2.
Stem Cells ; 41(11): 1037-1046, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37632456

RESUMO

Inherited retinal degeneration is a term used to describe heritable disorders that result from the death of light sensing photoreceptor cells. Although we and others believe that it will be possible to use gene therapy to halt disease progression early in its course, photoreceptor cell replacement will likely be required for patients who have already lost their sight. While advances in autologous photoreceptor cell manufacturing have been encouraging, development of technologies capable of efficiently delivering genome editing reagents to stem cells using current good manufacturing practices (cGMP) are needed. Gene editing reagents were delivered to induced pluripotent stem cells (iPSCs) using a Zephyr microfluidic transfection platform (CellFE). CRISPR-mediated cutting was quantified using an endonuclease assay. CRISPR correction was confirmed via digital PCR and Sanger sequencing. The resulting corrected cells were also karyotyped and differentiated into retinal organoids. We describe use of a novel microfluidic transfection platform to correct, via CRISPR-mediated homology-dependent repair (HDR), a disease-causing NR2E3 mutation in patient-derived iPSCs using cGMP compatible reagents and approaches. We show that the resulting cell lines have a corrected genotype, exhibit no off-target cutting, retain pluripotency and a normal karyotype and can be differentiated into retinal tissue suitable for transplantation. The ability to codeliver CRISPR/Cas9 and HDR templates to patient-derived iPSCs without using proprietary transfection reagents will streamline manufacturing protocols, increase the safety of resulting cell therapies, and greatly reduce the regulatory burden of clinical trials.


Assuntos
Edição de Genes , Células-Tronco Pluripotentes Induzidas , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Microfluídica , Transfecção
3.
Stem Cell Res Ther ; 14(1): 53, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36978104

RESUMO

National Eye Institute recently issued a new Strategic Plan outlining priority research areas for the next 5 years. Starting cell source for deriving stem cell lines is as an area with gaps and opportunities for making progress in regenerative medicine, a key area of emphasis within the NEI Strategic Plan. There is a critical need to understand how starting cell source affects the cell therapy product and what specific manufacturing capabilities and quality control standards are required for autologous vs allogeneic stem cell sources. With the goal of addressing some of these questions, in discussion with the community-at-large, NEI hosted a Town Hall at the Association for Research in Vision and Ophthalmology annual meeting in May 2022. This session leveraged recent clinical advances in autologous and allogeneic RPE replacement strategies to develop guidance for upcoming cell therapies for photoreceptors, retinal ganglion cells, and other ocular cell types. Our focus on stem cell-based therapies for RPE underscores the relatively advanced stage of RPE cell therapies to patients with several ongoing clinical trials. Thus, this workshop encouraged lessons learned from the RPE field to help accelerate progress in developing stem cell-based therapies in other ocular tissues. This report provides a synthesis of the key points discussed at the Town Hall and highlights needs and opportunities in ocular regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Doenças Retinianas , Humanos , Doenças Retinianas/terapia , Doenças Retinianas/metabolismo , Transplante de Células-Tronco , Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Pluripotentes Induzidas/metabolismo , Epitélio Pigmentado da Retina/metabolismo
4.
Hum Gene Ther ; 34(11-12): 530-539, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36793189

RESUMO

Adeno-associated virus (AAV)-mediated gene therapy has great potential for treating a wide range of retinal degenerative diseases. However, some initial enthusiasm for gene therapy has been tempered by emerging evidence of AAV-associated inflammation, which in several instances has contributed to clinical trial discontinuation. Currently, there is a paucity of data describing the variable immune responses to different AAV serotypes, and similarly, little is known regarding how these responses differ depending on route of ocular delivery, including in animal models of disease. In this study, we characterize the severity and retinal distribution of AAV-associated inflammation in rats triggered by delivery of five different AAV vectors (AAV1, AAV2, AAV6, AAV8, and AAV9), each of which contained enhanced green fluorescent protein (eGFP) driven under control of the constitutively active cytomegalovirus promoter. We further compare the inflammation across three different potential routes (intravitreal, subretinal, and suprachoroidal) of ocular delivery. Compared to buffer-injected controls for each route of delivery, AAV2 and AAV6 induced the most inflammation across all routes of delivery of vectors tested, with AAV6 inducing the highest levels of inflammation when delivered suprachoroidally. AAV1-induced inflammation was highest when delivered suprachoroidally, whereas minimal inflammation was seen with intravitreal delivery. In addition, AAV1, AAV2, and AAV6 each induce infiltration of adaptive immune cells like T cells and B cells into the neural retina, suggesting an innate adaptive response to a single dose of virus. AAV8 and AAV9 induced minimal inflammation across all routes of delivery. Importantly, the degree of inflammation was not correlated with vector-mediated transduction and expression of eGFP. These data emphasize the importance of considering ocular inflammation when selecting AAV serotypes and ocular delivery routes for the development of gene therapy strategies.


Assuntos
Dependovirus , Degeneração Retiniana , Animais , Ratos , Sorogrupo , Vetores Genéticos/genética , Retina/metabolismo , Degeneração Retiniana/metabolismo , Inflamação/metabolismo , Transdução Genética
5.
Gene Ther ; 30(3-4): 362-368, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36175490

RESUMO

In humans, mutations in the beta subunit of cGMP-phosphodiesterase type 6 (PDE6B) cause autosomal recessive retinitis pigmentosa (RP), which typically has an aggressive clinical course of early-onset severe vision loss due to rapid photoreceptor degeneration. In this study, we describe the generation of a novel Pde6b-deficient rat model using CRISPR-Cas9 genome editing. We characterize the model at multiple time points using clinical imaging modalities as well as histology with immunohistochemistry to show rapid photoreceptor degeneration compared to wild-type and heterozygous animals. We describe the manufacture of two different adeno-associated viral (AAV) vectors (AAV2/1, AAV2/5) under current Good Manufacturing Practices (cGMP) and demonstrate their ability to drive human PDE6B expression in vivo. We further demonstrate the ability of AAV-mediated subretinal gene therapy to delay photoreceptor loss in Pde6b-deficient rats compared to untreated controls. However, severe progressive photoreceptor loss was noted even in treated eyes, likely due to the aggressive nature of the disease. These data provide useful preclinical data to guide the development of potential human gene therapy for PDE6B-associated RP. In addition, the rapid photoreceptor degeneration of the Pde6b-deficient rat with intact inner retina may provide a useful model for the study of cell replacement strategies.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Ratos , Animais , Humanos , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Dependovirus/genética , Retina/metabolismo , Retinose Pigmentar/genética , Terapia Genética/métodos , Modelos Animais de Doenças , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo
6.
Case Rep Ophthalmol ; 13(2): 589-598, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160486

RESUMO

The effects of radiation retinopathy on the retinal vasculature have been well established; however, the literature describing the pathologic changes in the choriocapillaris is relatively lacking. In this report, we describe the histologic findings of a donor eye with a choroidal melanoma with special attention to the choriocapillaris. Clinical and histological findings, including immunohistochemistry and transmission electron microscopy, are described for the retina and choroid of a donor eye affected by radiation retinopathy secondary to treatment of choroidal melanoma. Cells within the tumor exhibited an epithelioid structure and balloon melanosomes. Notable infiltration of macrophages with elongated morphology was also observed. Atrophy of photoreceptors, retinal pigmented epithelium, and choriocapillaris was observed on the inferior edge of the lesion and extending past the tumor. The choriocapillaris endothelium showed more severe dropout at the periphery of the lesion where loss of fenestration, thickened cytosol, and degenerated pericytes were observed. Morphologic analysis revealed choriocapillaris loss with pronounced degeneration of choroidal pericytes. Understanding the differences in sensitivity to radiation injury between different cell types and different patients will provide better insight into radiation retinopathy.

7.
Cell Transplant ; 31: 9636897221104451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35758274

RESUMO

Loss of photoreceptor cells is a primary feature of inherited retinal degenerative disorders including age-related macular degeneration and retinitis pigmentosa. To restore vision in affected patients, photoreceptor cell replacement will be required. The ideal donor cells for this application are induced pluripotent stem cells (iPSCs) because they can be derived from and transplanted into the same patient obviating the need for long-term immunosuppression. A major limitation for retinal cell replacement therapy is donor cell loss associated with simple methods of cell delivery such as subretinal injections of bolus cell suspensions. Transplantation with supportive biomaterials can help maintain cellular integrity, increase cell survival, and encourage proper cellular alignment and improve integration with the host retina. Using a pig model of retinal degeneration, we recently demonstrated that polycaprolactone (PCL) scaffolds fabricated with two photon lithography have excellent local and systemic tolerability. In this study, we describe rapid photopolymerization-mediated production of PCL-based bioabsorbable scaffolds, a technique for loading iPSC-derived retinal progenitor cells onto the scaffold, methods of surgical transplantation in an immunocompromised rat model and tolerability of the subretinal grafts at 1, 3, and 6 months of follow-up (n = 150). We observed no local or systemic toxicity, nor did we observe any tumor formation despite extensive clinical evaluation, clinical chemistry, hematology, gross tissue examination and detailed histopathology. Demonstrating the local and systemic compatibility of biodegradable scaffolds carrying human iPSC-derived retinal progenitor cells is an important step toward clinical safety trials of this approach in humans.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana , Retinose Pigmentar , Animais , Materiais Biocompatíveis/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Ratos , Retina/patologia , Degeneração Retiniana/patologia , Degeneração Retiniana/terapia , Retinose Pigmentar/terapia , Transplante de Células-Tronco/métodos , Suínos
8.
Case Rep Ophthalmol ; 13(2): 323-329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35702652

RESUMO

Von Hippel-Lindau (VHL) disease is a rare inherited cancer syndrome that results in the development of tumor formation in multiple systems. In the eye, retinal capillary hemangioma (RCH) can lead to severe vision loss. Retinopathy of prematurity (ROP) is likewise a rare disease in which abnormal retinal vasculature develops in premature infants. Hallmarks of this disease include temporal dragging of the macula and retinal vessels. Here, we describe a 36-year-old myopic woman with a known history of ROP who presented with a vitreous hemorrhage in the right eye. As the vitreous hemorrhage cleared, she was found to have not only a retinal tear but also a juxtapapillary RCH that lead to a diagnosis of VHL disease in the patient, her mother, and her aunt. This is the first reported case of an individual with concomitant ROP and RCH from VHL. Her vision was remarkably well preserved over 25 years of follow-up despite having a moderate-sized laser scar temporal to the disc from treating the juxtapapillary RCH, likely due to the temporal macular dragging from her underlying ROP. This case highlights the importance of being aware that rare diagnoses can co-exist, and one must be aware of the protean manifestations of VHL.

9.
Hum Mol Genet ; 31(14): 2406-2423, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35181781

RESUMO

The human choroid is a heterogeneous, highly vascular connective tissue that dysfunctions in age-related macular degeneration (AMD). In this study, we performed single-cell RNA sequencing on 21 human choroids, 11 of which were derived from donors with early atrophic or neovascular AMD. Using this large donor cohort, we identified new gene expression signatures and immunohistochemically characterized discrete populations of resident macrophages, monocytes/inflammatory macrophages and dendritic cells. These three immune populations demonstrated unique expression patterns for AMD genetic risk factors, with dendritic cells possessing the highest expression of the neovascular AMD-associated MMP9 gene. Additionally, we performed trajectory analysis to model transcriptomic changes across the choroidal vasculature, and we identified expression signatures for endothelial cells from choroidal arterioles and venules. Finally, we performed differential expression analysis between control, early atrophic AMD, and neovascular AMD samples, and we observed that early atrophic AMD samples had high expression of SPARCL1, a gene that has been shown to increase in response to endothelial damage. Likewise, neovascular endothelial cells harbored gene expression changes consistent with endothelial cell damage and demonstrated increased expression of the sialomucins CD34 and ENCM, which were also observed at the protein level within neovascular membranes. Overall, this study characterizes the molecular features of new populations of choroidal endothelial cells and mononuclear phagocytes in a large cohort of AMD and control human donors.


Assuntos
Neovascularização de Coroide , Degeneração Macular Exsudativa , Inibidores da Angiogênese , Corioide , Neovascularização de Coroide/genética , Células Endoteliais , Humanos , Macrófagos , Transcriptoma/genética , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual , Degeneração Macular Exsudativa/complicações
10.
Retin Cases Brief Rep ; 16(1): 111-117, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31764884

RESUMO

PURPOSE: 1) To describe a case of autoimmune retinopathy mimicking heritable photoreceptor degeneration in a patient with common variable immune deficiency and 2) to investigate the humoral and cell-mediated branches of the immune system in this patient to better understand the mechanism of immune-mediated photoreceptor damage in this disease. METHODS: Retrospective chart review with evaluation of multimodal imaging, genotype analysis, and investigation of circulating autoantibodies and T-cell response to retinal antigens. RESULTS: A 40-year-old woman with bilateral, progressive vision loss was referred for evaluation of a possible inherited retinal degeneration. She was found to have asymmetric peripheral visual field constriction, cystoid macular edema, vitreous cells, and bone spicule-like pigmentary changes in both eyes. An extensive workup for underlying infectious or inflammatory causes was unrevealing, and molecular analysis for heritable retinal degeneration failed to identify a plausible disease-causing genotype. Screening for antiretinal antibodies showed the presence of multiple antiretinal antibodies, consistent with a diagnosis of autoimmune retinopathy. Immunologic workup demonstrated markedly decreased levels of serum IgA and IgG, consistent with common variable immune deficiency. T-cells isolated from the patient showed increased proliferation when stimulated with human retinal proteins, supporting a role for both cell- and humoral-mediated autoimmunity. Treatment with mycophenolate mofetil and intravenous immunoglobin therapy slowed the progression of disease and resulted in preservation of her central vision. CONCLUSION: Autoimmune retinopathy can be seen in common variable immune deficiency and has clinical findings similar to heritable photoreceptor degeneration. Both the humoral and cellular immune responses are involved in the pathophysiology. Immune modulatory therapy has stabilized the disease course in this patient and may play an important role in the management of autoimmune retinopathy.


Assuntos
Doenças Autoimunes , Imunodeficiência de Variável Comum , Degeneração Retiniana , Adulto , Doenças Autoimunes/diagnóstico , Imunodeficiência de Variável Comum/complicações , Diagnóstico Diferencial , Feminino , Humanos , Degeneração Retiniana/diagnóstico , Estudos Retrospectivos
12.
J Ocul Pharmacol Ther ; 37(10): 575-579, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34597181

RESUMO

Purpose: Despite numerous recent advances in retinal gene therapy using adeno-associated viruses (AAVs) as delivery vectors, there remains a crucial need to identify viral vectors with the ability to transduce specific retinal cell types and that have a larger carrying capacity than AAV. In this study, we evaluate the retinal tropism of 2 chimeric helper-dependent adenoviruses (HDAds), helper-dependent adenovirus serotype 5 (HDAd5)/3 and HDAd5/35, both ex vivo using human retinal explants and in vivo using rats. Methods: We transduced cultured human retinal explants with HDAd5/3 and HDAd5/35 carrying an eGFP vector and evaluated tropism and transduction efficiency using immunohistochemistry. To assess in vivo transduction efficiency, subretinal injections were performed in wild-type Sprague-Dawley rats. For both explants and subretinal injections, we delivered 10 µL (1 × 106 vector genomes/mL) and assessed tropism at 7- and 14-days post-transduction, respectively. Results: HDAd5/3 and HDAd5/35 both transduced human retinal ganglion cells (RGCs) and Müller cells, but not photoreceptors, in human retinal explants. However, subretinal injections in albino rats resulted in transduction of the retinal pigmented epithelium only, highlighting species-specific differences in retinal tropism and the value of a human explant model when testing vectors for eventual human gene therapy. Conclusions: Chimeric HDAds are promising candidates for the delivery of large genes, multiple genes, or neuroprotective factors to Müller cells and RGCs. These vectors may have utility for targeted therapy of neurodegenerative diseases primarily involving retinal ganglion or Müller cell types, such as glaucoma or macular telangiectasia type 2.


Assuntos
Adenoviridae/metabolismo , Terapia Genética/métodos , Vetores Genéticos/metabolismo , Retina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Células Ependimogliais/metabolismo , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/metabolismo
13.
Sci Rep ; 11(1): 18032, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504124

RESUMO

The isolation of a patient's metastatic cancer cells is the first, enabling step toward treatment of that patient using modern personalized medicine techniques. Whereas traditional standard-of-care approaches select treatments for cancer patients based on the histological classification of cancerous tissue at the time of diagnosis, personalized medicine techniques leverage molecular and functional analysis of a patient's own cancer cells to select treatments with the highest likelihood of being effective. Unfortunately, the pure populations of cancer cells required for these analyses can be difficult to acquire, given that metastatic cancer cells typically reside in fluid containing many different cell populations. Detection and analyses of cancer cells therefore require separation from these contaminating cells. Conventional cell sorting approaches such as Fluorescence Activated Cell Sorting or Magnetic Activated Cell Sorting rely on the presence of distinct surface markers on cells of interest which may not be known nor exist for cancer applications. In this work, we present a microfluidic platform capable of label-free enrichment of tumor cells from the ascites fluid of ovarian cancer patients. This approach sorts cells based on differences in biomechanical properties, and therefore does not require any labeling or other pre-sort interference with the cells. The method is also useful in the cases when specific surface markers do not exist for cells of interest. In model ovarian cancer cell lines, the method was used to separate invasive subtypes from less invasive subtypes with an enrichment of ~ sixfold. In ascites specimens from ovarian cancer patients, we found the enrichment protocol resulted in an improved purity of P53 mutant cells indicative of the presence of ovarian cancer cells. We believe that this technology could enable the application of personalized medicine based on analysis of liquid biopsy patient specimens, such as ascites from ovarian cancer patients, for quick evaluation of metastatic disease progression and determination of patient-specific treatment.


Assuntos
Ascite/diagnóstico , Separação Celular/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Células Neoplásicas Circulantes/metabolismo , Neoplasias Ovarianas/diagnóstico , Proteína Supressora de Tumor p53/genética , Ascite/genética , Ascite/metabolismo , Ascite/patologia , Líquido Ascítico/metabolismo , Líquido Ascítico/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Fenômenos Biomecânicos , Separação Celular/instrumentação , Feminino , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida/métodos , Modelos Biológicos , Reação em Cadeia da Polimerase Multiplex , Mutação , Invasividade Neoplásica , Células Neoplásicas Circulantes/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Medicina de Precisão , Proteína Supressora de Tumor p53/metabolismo
14.
Stem Cells Transl Med ; 10(10): 1384-1393, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34156760

RESUMO

Autologous photoreceptor cell replacement is one of the most promising approaches currently under development for the treatment of inherited retinal degenerative blindness. Unlike endogenous stem cell populations, induced pluripotent stem cells (iPSCs) can be differentiated into both rod and cone photoreceptors in high numbers, making them ideal for this application. That said, in addition to photoreceptor cells, state of the art retinal differentiation protocols give rise to all of the different cell types of the normal retina, the majority of which are not required and may in fact hinder successful photoreceptor cell replacement. As such, following differentiation photoreceptor cell enrichment will likely be required. In addition, to prevent the newly generated photoreceptor cells from suffering the same fate as the patient's original cells, correction of the patient's disease-causing genetic mutations will be necessary. In this review we discuss literature pertaining to the use of different cell sorting and transfection approaches with a focus on the development and use of novel next generation microfluidic devices. We will discuss how gold standard strategies have been used, the advantages and disadvantages of each, and how novel microfluidic platforms can be incorporated into the clinical manufacturing pipeline to reduce the complexity, cost, and regulatory burden associated with clinical grade production of photoreceptor cells for autologous cell replacement.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana , Diferenciação Celular , Humanos , Microfluídica , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/terapia
15.
Exp Eye Res ; 207: 108566, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33838142

RESUMO

Emerging treatment strategies for retinal degeneration involve replacing lost photoreceptors using supportive scaffolds to ensure cells survive the implantation process. While many design aspects of these scaffolds, including material chemistry and microstructural cues, have been studied in depth, a full set of design constraints has yet to be established. For example, while known to be important in other tissues and systems, the influence of mechanical properties on surgical handling has not been quantified. In this study, photocrosslinked poly(ethylene glycol) dimethacrylate (PEGDMA) was used as a model polymer to study the effects of scaffold modulus (stiffness) on surgical handling, independent of material chemistry. This was achieved by modulating the molecular weight and concentrations of the PEGDMA in various prepolymer solutions. Scaffold modulus of each formulation was measured using photo-rheology, which enabled the collection of real-time polymerization data. In addition to measuring scaffold mechanical properties, this approach gave insight on polymerization kinetics, which were used to determine the polymerization time required for each sample. Scaffold handling characteristics were qualitatively evaluated using both in vitro and ex vivo trials that mimicked the surgical procedure. In these trials, scaffolds with shear moduli above 35 kPa performed satisfactorily, while those below this limit performed poorly. In other words, scaffolds below this modulus were too fragile for reliable transplantation. To better compare these results with literature values, the compressive modulus was measured for select samples, with the lower shear modulus limit corresponding to roughly 115 kPa compressive modulus. While an upper mechanical property limit was not readily apparent from these results, there was increased variability in surgical handling performance in samples with shear moduli above 800 kPa. Overall, the knowledge presented here provides important groundwork for future studies designed to examine additional retinal scaffold considerations, including the effect of scaffold mechanical properties on retinal progenitor cell fate.


Assuntos
Metacrilatos/química , Polietilenoglicóis/química , Retina/citologia , Degeneração Retiniana/cirurgia , Transplante de Células-Tronco , Células-Tronco/citologia , Alicerces Teciduais/química , Animais , Reagentes de Ligações Cruzadas , Módulo de Elasticidade/fisiologia , Degeneração Retiniana/fisiopatologia , Suínos
16.
Hum Gene Ther ; 31(23-24): 1288-1299, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32948113

RESUMO

Viral-mediated gene augmentation offers tremendous promise for the treatment of inherited retinal diseases. The development of effective gene therapy requires an understanding of the vector's tissue-specific behavior, which may vary depending on serotype, route of delivery, or target species. Using an ex vivo organotypic explant system, we previously demonstrated that retinal tropism and transduction of adeno-associated virus type 2 (AAV2) vary significantly depending on serotype in human eyes. However, the ex vivo system has limited ability to assess route of ocular delivery, and relatively little literature exists on tropic differences between serotypes and routes of delivery in vivo. In this study, we demonstrate that retinal tropism and transduction efficiency of five different AAV2 serotypes (AAV2/1, AAV2/2, AAV2/6, AAV2/8, and AAV2/9) expressing enhanced green fluorescent protein driven by a cytomegalovirus promoter vary greatly depending on serotype and route of delivery (intravitreal, subretinal, or suprachoroidal) in rats. With subretinal delivery, all serotypes successfully transduced the retinal pigmented epithelium and outer nuclear layer (ONL), with AAV2/1 displaying the highest transduction efficiency and AAV2/2 and AAV2/6 showing lower ONL transduction. There was minimal transduction of the inner retina through subretinal delivery for any serotype. Tropism by suprachoroidal delivery mirrored that of subretinal delivery for all AAV serotypes but resulted in a wider distribution and greater ONL transduction. With intravitreal delivery, retinal transduction was seen primarily in the inner retina (retinal nerve fiber, ganglion cell, and inner nuclear layers) for AAV2/1 and AAV2/6, with AAV2/6 showing the highest transduction. When compared with data from human explant models, there are substantial differences in tropism and transduction that are important to consider when using rats as preclinical models for the development of ocular gene therapies for humans.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Doenças Retinianas/terapia , Pigmentos da Retina/genética , Animais , Vias de Administração de Medicamentos , Epitélio/metabolismo , Epitélio/patologia , Humanos , Injeções Intravítreas , Ratos , Doenças Retinianas/genética , Doenças Retinianas/patologia , Sorogrupo , Líquido Sub-Retiniano , Neurônios do Núcleo Supraquiasmático/metabolismo , Neurônios do Núcleo Supraquiasmático/patologia , Tropismo Viral/genética
17.
J Clin Invest ; 130(2): 608-611, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31961338

RESUMO

The advent of human induced pluripotent stem cells (iPSCs) provided a means for avoiding ethical concerns associated with the use of cells isolated from human embryos. The number of labs now using iPSCs to generate photoreceptor, retinal pigmented epithelial (RPE), and-more recently-choroidal endothelial cells has grown exponentially. However, for autologous cell replacement to be effective, manufacturing strategies will need to change. Many tasks carried out by hand will need simplifying and automating. In this issue of the JCI, Schaub and colleagues combined quantitative bright-field microscopy and artificial intelligence (deep neural networks and traditional machine learning) to noninvasively monitor iPSC-derived graft maturation, predict donor cell identity, and evaluate graft function prior to transplantation. This approach allowed the authors to preemptively identify and remove abnormal grafts. Notably, the method is (a) transferable, (b) cost and time effective, (c) high throughput, and (d) useful for primary product validation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Epitélio Pigmentado da Retina , Inteligência Artificial , Diferenciação Celular , Aprendizado Profundo , Células Endoteliais , Humanos , Microscopia
18.
Proc Natl Acad Sci U S A ; 116(48): 24100-24107, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712411

RESUMO

The human retinal pigment epithelium (RPE) and choroid are complex tissues that provide crucial support to the retina. Disease affecting either of these supportive tissues can lead to irreversible blindness in the setting of age-related macular degeneration. In this study, single-cell RNA sequencing was performed on macular and peripheral regions of RPE-choroid from 7 human donor eyes in 2 independent experiments. In the first experiment, total RPE/choroid preparations were evaluated and expression profiles specific to RPE and major choroidal cell populations were identified. As choroidal endothelial cells represent a minority of the total RPE/choroidal cell population but are strongly implicated in age-related macular degeneration (AMD) pathogenesis, a second single-cell RNA-sequencing experiment was performed using endothelial cells enriched by magnetic separation. In this second study, we identified gene expression signatures along the choroidal vascular tree, classifying the transcriptome of human choriocapillaris, arterial, and venous endothelial cells. We found that the choriocapillaris highly and specifically expresses the regulator of cell cycle gene (RGCC), a gene that responds to complement activation and induces apoptosis in endothelial cells. In addition, RGCC was the most up-regulated choriocapillaris gene in a donor diagnosed with AMD. These results provide a characterization of the human RPE and choriocapillaris transcriptome, offering potential insight into the mechanisms of choriocapillaris response to complement injury and choroidal vascular disease in age-related macular degeneration.


Assuntos
Corioide/metabolismo , Degeneração Macular/metabolismo , Retina/metabolismo , Transcriptoma , Corioide/citologia , Corioide/patologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Humanos , Retina/citologia , Retina/patologia , Análise de Célula Única
19.
Hum Gene Ther ; 30(11): 1371-1384, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31456426

RESUMO

The identification of >100 genes causing inherited retinal degeneration and the promising results of recent gene augmentation trials have led to an increase in the number of studies investigating the preclinical efficacy of viral-mediated gene transfer. Despite success using adeno-associated viruses, many disease-causing genes, such as ABCA4 or USH2A, are too large to fit into these vectors. One option for large gene delivery is the family of integration-deficient helper-dependent adenoviruses (HDAds), which efficiently transduce postmitotic neurons. However, HDAds have been shown in other organ systems to elicit an immune response, and the immunogenicity of HDAds in the retina has not been characterized. In this study, HDAd serotype 5 (HDAd5) was found to successfully transduce rod and cone photoreceptors in ex vivo human retinal organ cultures. The ocular inflammatory response to subretinal injection of the HDAd5 was evaluated using a rat model. Subretinal injection of HDAd5 carrying cytomegalovirus promoter-driven enhanced green fluorescent protein (HDAd5-CMVp-eGFP) elicited a robust inflammatory response by 3 days postinjection. This reaction included vitreous infiltration of ionized calcium-binding adapter molecule 1 (Iba1)-positive monocytes and increased expression of the proinflammatory protein, intercellular adhesion molecule 1 (ICAM-1). By 7 days postinjection, most Iba1-positive infiltrates migrated into the neural retina and ICAM-1 expression was significantly increased compared with buffer-injected control eyes. At 14 days postinjection, Iba1-positive cells persisted in the retinas of HDAd5-injected eyes, and there was thinning of the outer nuclear layer. Subretinal injection of an empty HDAd5 virus was used to confirm that the inflammatory response was in response to the HDAd5 vector and not due to eGFP-induced overexpression cytotoxicity. Subretinal injection of lower doses of HDAd5 dampened the inflammatory response, but also eGFP expression. Despite their larger carrying capacity, further work is needed to elucidate the inflammatory pathways involved and to identify an immunomodulation paradigm sufficient for safe and effective transfer of large genes to the retina using HDAd5.


Assuntos
Adenoviridae/fisiologia , Vírus Auxiliares/fisiologia , Inflamação/patologia , Inflamação/virologia , Retina/patologia , Retina/virologia , Transdução Genética , Animais , Morte Celular , Feminino , Proteínas de Fluorescência Verde/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Células Fotorreceptoras de Vertebrados/patologia , Ratos
20.
Am J Pathol ; 189(7): 1473-1480, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31051169

RESUMO

Early age-related macular degeneration (AMD) is characterized by degeneration of the choriocapillaris, the vascular supply of retinal photoreceptor cells. We assessed vascular loss during disease progression in the choriocapillaris and larger vessels in the deeper choroid. Human donor maculae from controls (n = 99), early AMD (n = 35), or clinically diagnosed with geographic atrophy (GA; n = 9, collected from outside the zone of retinal pigment epithelium degeneration) were evaluated using Ulex europaeus agglutinin-I labeling to discriminate between vessels with intact endothelial cells and ghost vessels. Morphometric analyses of choriocapillaris density (cross-sectional area of capillary lumens divided by length) and of vascular lumen/stroma ratio in the outer choroid were performed. Choriocapillaris loss was observed in early AMD (Bonferroni-corrected P = 0.024) with greater loss in GA (Bonferroni-corrected P < 10-9), even in areas of intact retinal pigment epithelium. In contrast, changes in lumen/stroma ratio in the outer choroid were not found to differ between controls and AMD or GA eyes (P > 0.05), suggesting choriocapillaris changes are more prevalent in AMD than those in the outer choroid. In addition, vascular endothelial growth factor-A levels were negatively correlated with choriocapillaris vascular density. These findings support the concept that choroidal vascular degeneration, predominantly in the microvasculature, contributes to dry AMD progression. Addressing capillary loss in AMD remains an important translational target.


Assuntos
Corioide , Atrofia Geográfica , Epitélio Pigmentado da Retina , Fator A de Crescimento do Endotélio Vascular/metabolismo , Idoso , Idoso de 80 Anos ou mais , Corioide/irrigação sanguínea , Corioide/metabolismo , Corioide/patologia , Feminino , Atrofia Geográfica/metabolismo , Atrofia Geográfica/patologia , Humanos , Masculino , Epitélio Pigmentado da Retina/irrigação sanguínea , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA