Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 54(6): 4551-4559, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27379735

RESUMO

Major depressive disorder (MDD) is one of the leading forms of psychiatric disorders, characterized by aversion to mobility, neurotransmitter deficiency, and energy metabolic decline. Low-level laser therapy (LLLT) has been investigated in a variety of neurodegenerative disorders associated with mitochondrial dysfunction and functional impairments. The goal of this study was to examine the effect of LLLT on depression-like behaviors and to explore the potential mechanism by detecting mitochondrial function following LLLT. Depression models in space restriction mice and Abelson helper integration site-1 (Ahi1) knockout (KO) mice were employed in this work. Our results revealed that LLLT effectively improved depression-like behaviors, in the two depression mice models, by decreasing immobility duration in behavioral despair tests. In addition, ATP biosynthesis and the level of mitochondrial complex IV expression and activity were significantly elevated in prefrontal cortex (PFC) following LLLT. Intriguingly, LLLT has no effects on ATP content and mitochondrial complex I-IV levels in other tested brain regions, hippocampus and hypothalamus. As a whole, these findings shed light on a novel strategy of transcranial LLLT on depression improvement by ameliorating neurotransmitter abnormalities and promoting mitochondrial function in PFC. The present work provides concrete groundwork for further investigation of LLLT for depression treatment.


Assuntos
Comportamento Animal/efeitos da radiação , Depressão/terapia , Terapia com Luz de Baixa Intensidade , Proteínas Adaptadoras de Transporte Vesicular , Trifosfato de Adenosina/biossíntese , Animais , Depressão/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Camundongos Endogâmicos ICR , Camundongos Knockout , Mitocôndrias/metabolismo , Neurotransmissores/metabolismo , Fenótipo , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Restrição Física , Estresse Psicológico/complicações
2.
J Mol Neurosci ; 61(1): 42-51, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27604243

RESUMO

Aberrant calcium influx is a common feature following ischemic reperfusion (I/R) in transient global cerebral ischemia (GCI) and causes delayed neuronal cell death in the CA1 region of the hippocampus. Activation of calcium-calmodulin (CaM)-dependent protein kinase IIα (CaMKIIα) is a key event in calcium signaling in ischemic injury. The present study examined the effects of intracerebroventricular (icv) injection of tatCN21 in ischemic rats 3 h after GCI reperfusion. Cresyl violet and NeuN staining revealed that tatCN21 exerted neuroprotective effects against delayed neuronal cell death of hippocampal CA1 pyramidal neurons 10 days post-GCI. In addition, TatCN21 administration ameliorated GCI-induced spatial memory deficits in the Barnes maze task as well as anxiety-like behaviors and spontaneous motor activity in the elevated plus maze and open field test, respectively. Mechanistic studies showed that the administration of tatCN21 decreased GCI-induced phosphorylation, translocation, and membrane targeting of CaMKIIα. Treatment with tatCN21 also inhibited the level of CaMKIIα-NR2B interaction and NR2B phosphorylation. Our results revealed an important role of tatCN21 in inhibiting CaMKIIα activation and its beneficial effects in neuroprotection and memory preservation in an ischemic brain injury model.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Fármacos Neuroprotetores/uso terapêutico , Peptídeos/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Peptídeos/uso terapêutico , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
3.
Neurobiol Aging ; 49: 165-182, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815990

RESUMO

Beta amyloid (Aß) is well accepted to play a central role in the pathogenesis of Alzheimer's disease (AD). The present work evaluated the therapeutic effects of low-level laser irradiation (LLI) on Aß-induced neurotoxicity in rat hippocampus. Aß 1-42 was injected bilaterally to the hippocampus CA1 region of adult male rats, and 2-minute daily LLI treatment was applied transcranially after Aß injection for 5 consecutive days. LLI treatment suppressed Aß-induced hippocampal neurodegeneration and long-term spatial and recognition memory impairments. Molecular studies revealed that LLI treatment: (1) restored mitochondrial dynamics, by altering fission and fusion protein levels thereby suppressing Aß-induced extensive fragmentation; (2) suppressed Aß-induced collapse of mitochondrial membrane potential; (3) reduced oxidized mitochondrial DNA and excessive mitophagy; (4) facilitated mitochondrial homeostasis via modulation of the Bcl-2-associated X protein/B-cell lymphoma 2 ratio and of mitochondrial antioxidant expression; (5) promoted cytochrome c oxidase activity and adenosine triphosphate synthesis; (6) suppressed Aß-induced glucose-6-phosphate dehydrogenase and nicotinamide adenine dinucleotide phosphate oxidase activity; (7) enhanced the total antioxidant capacity of hippocampal CA1 neurons, whereas reduced the oxidative damage; and (8) suppressed Aß-induced reactive gliosis, inflammation, and tau hyperphosphorylation. Although development of AD treatments has focused on reducing cerebral Aß levels, by the time the clinical diagnosis of AD or mild cognitive impairment is made, the brain is likely to have already been exposed to years of elevated Aß levels with dire consequences for multiple cellular pathways. By alleviating a broad spectrum of Aß-induced pathology that includes mitochondrial dysfunction, oxidative stress, neuroinflammation, neuronal apoptosis, and tau pathology, LLI could represent a new promising therapeutic strategy for AD.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/radioterapia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Região CA1 Hipocampal/metabolismo , Terapia com Luz de Baixa Intensidade , Dinâmica Mitocondrial , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Doença de Alzheimer/psicologia , Animais , Apoptose , Região CA1 Hipocampal/patologia , Inflamação , Lasers Semicondutores/uso terapêutico , Terapia com Luz de Baixa Intensidade/métodos , Masculino , Neurônios/patologia , Estresse Oxidativo , Ratos Sprague-Dawley , Reconhecimento Psicológico , Memória Espacial , Tauopatias/etiologia , Tauopatias/radioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA