RESUMO
BACKGROUND: Inhibition of PCSK9 (proprotein convertase subtilisin/kexin type 9)-low density lipoprotein receptor interaction with injectable monoclonal antibodies or small interfering RNA lowers plasma low density lipoprotein-cholesterol, but despite nearly 2 decades of effort, an oral inhibitor of PCSK9 is not available. Macrocyclic peptides represent a novel approach to target proteins traditionally considered intractable to small-molecule drug design. METHODS: Novel mRNA display screening technology was used to identify lead chemical matter, which was then optimized by applying structure-based drug design enabled by novel synthetic chemistry to identify macrocyclic peptide (MK-0616) with exquisite potency and selectivity for PCSK9. Following completion of nonclinical safety studies, MK-0616 was administered to healthy adult participants in a single rising-dose Phase 1 clinical trial designed to evaluate its safety, pharmacokinetics, and pharmacodynamics. In a multiple-dose trial in participants taking statins, MK-0616 was administered once daily for 14 days to characterize the safety, pharmacokinetics, and pharmacodynamics (change in low density lipoprotein cholesterol). RESULTS: MK-0616 displayed high affinity (Ki = 5pM) for PCSK9 in vitro and sufficient safety and oral bioavailability preclinically to enable advancement into the clinic. In Phase 1 clinical studies in healthy adults, single oral doses of MK-0616 were associated with >93% geometric mean reduction (95% CI, 84-103) of free, unbound plasma PCSK9; in participants on statin therapy, multiple-oral-dose regimens provided a maximum 61% geometric mean reduction (95% CI, 43-85) in low density lipoprotein cholesterol from baseline after 14 days of once-daily dosing of 20 mg MK-0616. CONCLUSIONS: This work validates the use of mRNA display technology for identification of novel oral therapeutic agents, exemplified by the identification of an oral PCSK9 inhibitor, which has the potential to be a highly effective cholesterol lowering therapy for patients in need.
Assuntos
Anticolesterolemiantes , Inibidores de Hidroximetilglutaril-CoA Redutases , Hipercolesterolemia , Adulto , Humanos , Anticolesterolemiantes/efeitos adversos , Colesterol , LDL-Colesterol , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Peptídeos/uso terapêutico , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismoRESUMO
Pathway activating mutations of the transcription factor NRF2 and its negative regulator KEAP1 are strongly correlative with poor clinical outcome with pemetrexed/carbo(cis)platin/pembrolizumab (PCP) chemo-immunotherapy in lung cancer. Despite the strong genetic support and therapeutic potential for a NRF2 transcriptional inhibitor, currently there are no known direct inhibitors of the NRF2 protein or its complexes with MAF and/or DNA. Herein we describe the design of a novel and high-confidence homology model to guide a medicinal chemistry effort that resulted in the discovery of a series of peptides that demonstrate high affinity, selective binding to the Antioxidant Response Element (ARE) DNA and thereby displace NRF2-MAFG from its promoter, which is an inhibitory mechanism that to our knowledge has not been previously described. In addition to their activity in electrophoretic mobility shift (EMSA) and TR-FRET-based assays, we show significant dose-dependent ternary complex disruption of NRF2-MAFG binding to DNA by SPR, as well as cellular target engagement by thermal destabilization of HiBiT-tagged NRF2 in the NCI-H1944 NSCLC cell line upon digitonin permeabilization, and SAR studies leading to improved cellular stability. We report the characterization and unique profile of lead peptide 18, which we believe to be a useful in vitro tool to probe NRF2 biology in cancer cell lines and models, while also serving as an excellent starting point for additional in vivo optimization toward inhibition of NRF2-driven transcription to address a significant unmet medical need in non-small cell lung cancer (NSCLC).
Assuntos
DNA/química , Fator de Transcrição MafG/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Peptídeos/química , Elementos de Resposta Antioxidante/efeitos dos fármacos , DNA/metabolismo , Desenho de Fármacos , Estabilidade de Medicamentos , Ensaio de Desvio de Mobilidade Eletroforética , Meia-Vida , Células HeLa , Humanos , Fator de Transcrição MafG/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Peptídeos/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Relação Estrutura-AtividadeRESUMO
Using a combination of traditional Medicinal Chemistry/SAR analysis, crystallography, and molecular modeling, we have designed and synthesized a series of novel, highly potent NNRTIs that possess broad antiviral activity against a number of key clinical mutations.
Assuntos
Fármacos Anti-HIV/farmacologia , Desenho de Fármacos , Éteres/química , HIV-1/efeitos dos fármacos , Inibidores da Transcriptase Reversa/farmacologia , Replicação Viral/efeitos dos fármacos , Fármacos Anti-HIV/síntese química , Sítios de Ligação , Cristalografia por Raios X , Farmacorresistência Viral , HIV-1/enzimologia , HIV-1/genética , Modelos Químicos , Mutação , Nucleosídeos/química , Inibidores da Transcriptase Reversa/síntese química , Relação Estrutura-Atividade , Replicação Viral/fisiologiaRESUMO
We have prepared a series of potent, dual inhibitors of the prenyl transferases farnesyl protein transferase (FPTase) and geranyl-geranyl protein transferase I (GGPTase). The compounds were shown to possess potent activity against both enzymes in cell culture. Mechanistic analysis has shown that the compounds are CAAX competitive for FPTase inhibition but geranyl-geranyl pyrophosphate (GGPP) competitive for GGPTase inhibiton.