Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445903

RESUMO

Near-infrared autofluorescence (NIRAF) in unstable atherosclerotic plaque has been suggested as a novel imaging technology for high-risk atherosclerosis. Intraplaque hemorrhage (IPH) and bilirubin, derived from the subsequent degradation of heme, have been proposed as the source of NIRAF, although their roles and the underlying mechanism responsible for NIRAF remain unclear. To test the proposed role of bilirubin as the source of NIRAF in high-risk atherosclerosis, Biliverdin reductase a gene and apolipoprotein E gene double-knockout (Bvra-/-Apoe-/-) mice were subjected to the Western diet and tandem stenosis (TS) surgery, as a model of both bilirubin deficiency and plaque instability. Human coronary arteries containing atherosclerotic plaques were obtained from heart transplant recipients. The NIRAF was determined by in vivo fluorescence emission computed tomography, and ex vivo infrared imaging. The cholesterol content was quantified by HPLC with UV detection. In Bvra+/+Apoe-/- TS mice, the NIRAF intensity was significantly higher in unstable plaque than in stable plaque, yet the NIRAF in unstable plaque was undistinguishable in Bvra+/+Apoe-/- and littermate Bvra-/-Apoe-/- TS mice. Moreover, the unstable plaque in TS mice exhibited a lower NIRAF compared with highly cellular plaque that lacked most of the features of unstable plaque. In human coronary arteries, the NIRAF associated with cholesterol-rich, calcified lesions, rather than just cholesterol-rich lesions. The NIRAF in atherosclerotic plaque can be dissociated from IPH and bilirubin, such that the compositional meaning of an elevated NIRAF remains obscure.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Animais , Camundongos , Placa Aterosclerótica/patologia , Bilirrubina , Aterosclerose/diagnóstico por imagem , Aterosclerose/genética , Aterosclerose/complicações , Hemorragia/patologia , Apolipoproteínas E/genética
2.
Redox Biol ; 58: 102532, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36375379

RESUMO

Currently there are no established therapies to treat high-risk patients with unstable atherosclerotic lesions that are prone to rupture and can result in thrombosis, abrupt arterial occlusion, and a precipitous infarction. Rather than being stenotic, rupture-prone non-occlusive plaques are commonly enriched with inflammatory cells and have a thin fibrous cap. We reported previously that inhibition of the pro-inflammatory enzyme myeloperoxidase (MPO) with the suicide inhibitor AZM198 prevents formation of unstable plaque in the Tandem Stenosis (TS) mouse model of plaque instability. However, in our previous study AZM198 was administered to animals before unstable plaque was present and hence it did not test the significant unmet clinical need present in high-risk patients with vulnerable atherosclerosis. In the present study we therefore asked whether pharmacological inhibition of MPO with AZM198 can stabilize pre-existing unstable lesions in an interventional setting using the mouse model of plaque instability. In vivo molecular magnetic resonance imaging of arterial MPO activity using bis-5-hydroxytryptamide-DTPA-Gd and histological analyses revealed that arterial MPO activity was elevated one week after TS surgery, prior to the presence of unstable lesions observed two weeks after TS surgery. Animals with pre-existing unstable plaque were treated with AZM198 for one or five weeks. Both short- and long-term intervention effectively inhibited arterial MPO activity and increased fibrous cap thickness, indicative of a more stable plaque phenotype. Plaque stabilization was observed without AZM198 affecting the arterial content of Ly6B.2+- and CD68+-cells and MPO protein. These findings demonstrate that inhibition of arterial MPO activity converts unstable into stable atherosclerotic lesions in a preclinical model of plaque instability and highlight the potential therapeutic potency of MPO inhibition for the management of high-risk patients and the development of novel protective strategies against cardiovascular diseases.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Peroxidase , Placa Aterosclerótica , Animais , Camundongos , Aterosclerose/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Modelos Animais de Doenças , Peroxidase/antagonistas & inibidores , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia
3.
Redox Biol ; 46: 102127, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34521065

RESUMO

Mitochondrial energy production and function rely on optimal concentrations of the essential redox-active lipid, coenzyme Q (CoQ). CoQ deficiency results in mitochondrial dysfunction associated with increased mitochondrial oxidative stress and a range of pathologies. What drives CoQ deficiency in many of these pathologies is unknown, just as there currently is no effective therapeutic strategy to overcome CoQ deficiency in humans. To date, large-scale studies aimed at systematically interrogating endogenous systems that control CoQ biosynthesis and their potential utility to treat disease have not been carried out. Therefore, we developed a quantitative high-throughput method to determine CoQ concentrations in yeast cells. Applying this method to the Yeast Deletion Collection as a genome-wide screen, 30 genes not known previously to regulate cellular concentrations of CoQ were discovered. In combination with untargeted lipidomics and metabolomics, phosphatidylethanolamine N-methyltransferase (PEMT) deficiency was confirmed as a positive regulator of CoQ synthesis, the first identified to date. Mechanistically, PEMT deficiency alters mitochondrial concentrations of one-carbon metabolites, characterized by an increase in the S-adenosylmethionine to S-adenosylhomocysteine (SAM-to-SAH) ratio that reflects mitochondrial methylation capacity, drives CoQ synthesis, and is associated with a decrease in mitochondrial oxidative stress. The newly described regulatory pathway appears evolutionary conserved, as ablation of PEMT using antisense oligonucleotides increases mitochondrial CoQ in mouse-derived adipocytes that translates to improved glucose utilization by these cells, and protection of mice from high-fat diet-induced insulin resistance. Our studies reveal a previously unrecognized relationship between two spatially distinct lipid pathways with potential implications for the treatment of CoQ deficiencies, mitochondrial oxidative stress/dysfunction, and associated diseases.


Assuntos
Doenças Mitocondriais , Ubiquinona , Animais , Testes Genéticos , Camundongos , Doenças Mitocondriais/genética , Oxirredução , Fosfatidiletanolamina N-Metiltransferase , Fosfolipídeos , Ubiquinona/metabolismo
4.
Nat Cancer ; 1(10): 998-1009, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33479702

RESUMO

Metabolic reprogramming is a key hallmark of cancer, but less is known about metabolic plasticity of the same tumor at different sites. Here, we investigated the metabolic adaptation of leukemia in two different microenvironments, the bone marrow and the central nervous system (CNS). We identified a metabolic signature of fatty-acid synthesis in CNS leukemia, highlighting Stearoyl-CoA desaturase (SCD1) as a key player. In vivo SCD1 overexpression increases CNS disease, whilst genetic or pharmacological inhibition of SCD1 decreases CNS load. Overall, we demonstrated that leukemic cells dynamically rewire metabolic pathways to suit local conditions and that targeting these adaptations can be exploited therapeutically.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Estearoil-CoA Dessaturase , Sistema Nervoso Central/metabolismo , Humanos , Lipogênese , Estearoil-CoA Dessaturase/genética , Microambiente Tumoral
5.
Cancer Res ; 80(2): 175-188, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31562248

RESUMO

Statins are widely prescribed inhibitors of the mevalonate pathway, acting to lower systemic cholesterol levels. The mevalonate pathway is critical for tumorigenesis and is frequently upregulated in cancer. Nonetheless, reported effects of statins on tumor progression are ambiguous, making it unclear whether statins, alone or in combination, can be used for chemotherapy. Here, using advanced mass spectrometry and isotope tracing, we showed that statins only modestly affected cancer cholesterol homeostasis. Instead, they significantly reduced synthesis and levels of another downstream product, the mitochondrial electron carrier coenzyme Q, both in cultured cancer cells and tumors. This compromised oxidative phosphorylation, causing severe oxidative stress. To compensate, cancer cells upregulated antioxidant metabolic pathways, including reductive carboxylation, proline synthesis, and cystine import. Targeting cystine import with an xCT transporter-lowering MEK inhibitor, in combination with statins, caused profound tumor cell death. Thus, statin-induced ROS production in cancer cells can be exploited in a combinatorial regimen. SIGNIFICANCE: Cancer cells induce specific metabolic pathways to alleviate the increased oxidative stress caused by statin treatment, and targeting one of these pathways synergizes with statins to produce a robust antitumor response.See related commentary by Cordes and Metallo, p. 151.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias Pancreáticas , Humanos , Ácido Mevalônico , Estresse Oxidativo/efeitos dos fármacos , Ubiquinona
6.
Cancer Discov ; 9(5): 617-627, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837243

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) develops a pronounced stromal response reflecting an aberrant wound-healing process. This stromal reaction features transdifferentiation of tissue-resident pancreatic stellate cells (PSC) into activated cancer-associated fibroblasts, a process induced by PDAC cells but of unclear significance for PDAC progression. Here, we show that PSCs undergo a dramatic lipid metabolic shift during differentiation in the context of pancreatic tumorigenesis, including remodeling of the intracellular lipidome and secretion of abundant lipids in the activated, fibroblastic state. Specifically, stroma-derived lysophosphatidylcholines support PDAC cell synthesis of phosphatidylcholines, key components of cell membranes, and also facilitate production of the potent wound-healing mediator lysophosphatidic acid (LPA) by the extracellular enzyme autotaxin, which is overexpressed in PDAC. The autotaxin-LPA axis promotes PDAC cell proliferation, migration, and AKT activation, and genetic or pharmacologic autotaxin inhibition suppresses PDAC growth in vivo. Our work demonstrates how PDAC cells exploit the local production of wound-healing mediators to stimulate their own growth and migration. SIGNIFICANCE: Our work highlights an unanticipated role for PSCs in producing the oncogenic LPA signaling lipid and demonstrates how PDAC tumor cells co-opt the release of wound-healing mediators by neighboring PSCs to promote their own proliferation and migration.See related commentary by Biffi and Tuveson, p. 578.This article is highlighted in the In This Issue feature, p. 565.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Lisofosfatidilcolinas/metabolismo , Neoplasias Pancreáticas/metabolismo , Células Estreladas do Pâncreas/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Células Estromais/metabolismo , Animais , Carcinoma Ductal Pancreático/patologia , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/patologia , Transdução de Sinais , Células Estromais/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cell Rep ; 24(10): 2596-2605.e5, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30184495

RESUMO

Lipid droplets, which store triglycerides and cholesterol esters, are a prominent feature of clear cell renal cell carcinoma (ccRCC). Although their presence in ccRCC is critical for sustained tumorigenesis, their contribution to lipid homeostasis and tumor cell viability is incompletely understood. Here we show that disrupting triglyceride synthesis compromises the growth of both ccRCC tumors and ccRCC cells exposed to tumor-like conditions. Functionally, hypoxia leads to increased fatty acid saturation through inhibition of the oxygen-dependent stearoyl-CoA desaturase (SCD) enzyme. Triglycerides counter a toxic buildup of saturated lipids, primarily by releasing the unsaturated fatty acid oleate (the principal product of SCD activity) from lipid droplets into phospholipid pools. Disrupting this process derails lipid homeostasis, causing overproduction of toxic saturated ceramides and acyl-carnitines as well as activation of the NF-κB transcription factor. Our work demonstrates that triglycerides promote homeostasis by "buffering" specific fatty acids.


Assuntos
Ácidos Graxos/metabolismo , Hipóxia/metabolismo , Triglicerídeos/metabolismo , Animais , Carcinoma de Células Renais/metabolismo , Linhagem Celular , Sobrevivência Celular/fisiologia , Ceramidas/metabolismo , Cromatografia Líquida , Ácidos Graxos/sangue , Feminino , Citometria de Fluxo , Humanos , Hipóxia/sangue , Neoplasias Renais/metabolismo , Metabolismo dos Lipídeos/fisiologia , Espectrometria de Massas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estearoil-CoA Dessaturase/metabolismo , Triglicerídeos/sangue
8.
J Cell Sci ; 130(20): 3455-3466, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28871044

RESUMO

Melanoma cells steer out of tumours using self-generated lysophosphatidic acid (LPA) gradients. The cells break down LPA, which is present at high levels around the tumours, creating a dynamic gradient that is low in the tumour and high outside. They then migrate up this gradient, creating a complex and evolving outward chemotactic stimulus. Here, we introduce a new assay for self-generated chemotaxis, and show that raising LPA levels causes a delay in migration rather than loss of chemotactic efficiency. Knockdown of the lipid phosphatase LPP3 - but not of its homologues LPP1 or LPP2 - diminishes the cell's ability to break down LPA. This is specific for chemotactically active LPAs, such as the 18:1 and 20:4 species. Inhibition of autotaxin-mediated LPA production does not diminish outward chemotaxis, but loss of LPP3-mediated LPA breakdown blocks it. Similarly, in both 2D and 3D invasion assays, knockdown of LPP3 diminishes the ability of melanoma cells to invade. Our results demonstrate that LPP3 is the key enzyme in the breakdown of LPA by melanoma cells, and confirm the importance of attractant breakdown in LPA-mediated cell steering.This article has an associated First Person interview with the first author of the paper.


Assuntos
Lisofosfolipídeos/metabolismo , Melanoma/metabolismo , Fosfatidato Fosfatase/fisiologia , Neoplasias Cutâneas/metabolismo , Linhagem Celular Tumoral , Quimiotaxia , Humanos , Melanoma/patologia , Invasividade Neoplásica , Neoplasias Cutâneas/patologia
9.
Cell Rep ; 18(3): 647-658, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28099844

RESUMO

Acetyl-CoA is a key metabolic intermediate with an important role in transcriptional regulation. The nuclear-cytosolic acetyl-CoA synthetase 2 (ACSS2) was found to sustain the growth of hypoxic tumor cells. It generates acetyl-CoA from acetate, but exactly which pathways it supports is not fully understood. Here, quantitative analysis of acetate metabolism reveals that ACSS2 fulfills distinct functions depending on its cellular location. Exogenous acetate uptake is controlled by expression of both ACSS2 and the mitochondrial ACSS1, and ACSS2 supports lipogenesis. The mitochondrial and lipogenic demand for two-carbon acetyl units considerably exceeds the uptake of exogenous acetate, leaving it to only sparingly contribute to histone acetylation. Surprisingly, oxygen and serum limitation increase nuclear localization of ACSS2. We find that nuclear ACSS2 recaptures acetate released from histone deacetylation for recycling by histone acetyltransferases. Our work provides evidence for limited equilibration between nuclear and cytosolic acetyl-CoA and demonstrates that ACSS2 retains acetate to maintain histone acetylation.


Assuntos
Acetato-CoA Ligase/metabolismo , Acetatos/metabolismo , Hipóxia Celular , Histonas/metabolismo , Acetato-CoA Ligase/antagonistas & inibidores , Acetato-CoA Ligase/genética , Acetatos/química , Acetilcoenzima A/metabolismo , Acetilação , Isótopos de Carbono/química , Linhagem Celular Tumoral , Núcleo Celular/enzimologia , Cromatografia Líquida de Alta Pressão , Meios de Cultura/química , Humanos , Espectrometria de Massas , Metaboloma , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Soro/química
10.
Curr Opin Biotechnol ; 43: 127-133, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27915214

RESUMO

The lipidome comprises a large array of molecules with diverse physicochemical properties. Lipids are structural components of cells, act as a source of energy, and function as signaling mediators. Alterations in lipid metabolism are involved in the onset and progression of a variety of diseases, including metabolic syndrome and cancer. Because of this, interest in lipidomics, the comprehensive characterization of the lipidome by mass spectrometry, has intensified in recent years. However, obtaining a truly complete overview of all lipids in a sample has remained very challenging due to their enormous structural diversity. Here, we provide an overview of the collection of analytical approaches used to study various lipid classes, emphasizing innovations in sample preparation and liquid chromatography-mass spectrometry (LC-MS). Additionally, we provide practical suggestions for increasing the coverage of the lipidome.


Assuntos
Lipídeos/análise , Espectrometria de Massas/métodos , Animais , Humanos , Metabolismo dos Lipídeos
12.
Sci Adv ; 2(10): e1601273, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27819051

RESUMO

Serine catabolism to glycine and a one-carbon unit has been linked to the anabolic requirements of proliferating mammalian cells. However, genome-scale modeling predicts a catabolic role with one-carbon release as formate. We experimentally prove that in cultured cancer cells and nontransformed fibroblasts, most of the serine-derived one-carbon units are released from cells as formate, and that formate release is dependent on mitochondrial reverse 10-CHO-THF synthetase activity. We also show that in cancer cells, formate release is coupled to mitochondrial complex I activity, whereas in nontransformed fibroblasts, it is partially insensitive to inhibition of complex I activity. We demonstrate that in mice, about 50% of plasma formate is derived from serine and that serine starvation or complex I inhibition reduces formate synthesis in vivo. These observations transform our understanding of one-carbon metabolism and have implications for the treatment of diabetes and cancer with complex I inhibitors.

13.
Cancer Metab ; 4(1): 17, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27594997

RESUMO

BACKGROUND: Acetyl-CoA is a key metabolic intermediate with roles in the production of energy and biomass, as well as in metabolic regulation. It was recently found that acetate is crucial for maintaining acetyl-CoA production in hypoxic cancer cells. However, the availability of free acetate in the tumor environment and how much tumor cells consume remains unknown. Similarly, much is still to be learned about changes in the dynamics and distribution of acetylation in response to tumor-relevant conditions. The analysis of acetate is non-trivial, and to help address these topics, we developed a rapid and robust method for the analysis of both free and bound acetate in biological samples. RESULTS: We developed a sensitive and high-throughput method for the analysis of acetate based on alkylation to its propyl derivative and gas chromatography-mass spectrometry. The method facilitates simultaneous quantification of both (12)C- and (13)C-acetate, shows high reproducibility (< 10 % RSD), and has a wide linear range of quantification (2-2000 µM). We demonstrate the method's utility by measuring free acetate uptake by cultured cancer cells and by quantifying total acetylation (using hydrolysis) in separate cellular compartments. Additionally, we measure free acetate in tissues and bio-fluids and show that there are considerable differences in acetate concentrations between organs in vivo, providing insights into its complex systemic metabolism and availability for various types of tumors. CONCLUSIONS: Our approach for the quantification of acetate is straightforward to implement using widely available equipment and reagents, and will aid in in-depth investigation of various aspects of acetate metabolism. It is also readily adaptable to the analysis of formate and short-chain fatty acids, making it highly relevant to the cancer metabolism community.

14.
Nat Cell Biol ; 17(10): 1317-26, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26302408

RESUMO

Succinate dehydrogenase (SDH) is a heterotetrameric nuclear-encoded complex responsible for the oxidation of succinate to fumarate in the tricarboxylic acid cycle. Loss-of-function mutations in any of the SDH genes are associated with cancer formation. However, the impact of SDH loss on cell metabolism and the mechanisms enabling growth of SDH-defective cells are largely unknown. Here, we generated Sdhb-ablated kidney mouse cells and used comparative metabolomics and stable-isotope-labelling approaches to identify nutritional requirements and metabolic adaptations to SDH loss. We found that lack of SDH activity commits cells to consume extracellular pyruvate, which sustains Warburg-like bioenergetic features. We further demonstrated that pyruvate carboxylation diverts glucose-derived carbons into aspartate biosynthesis, thus sustaining cell growth. By identifying pyruvate carboxylase as essential for the proliferation and tumorigenic capacity of SDH-deficient cells, this study revealed a metabolic vulnerability for potential future treatment of SDH-associated malignancies.


Assuntos
Ácido Aspártico/biossíntese , Proliferação de Células , Ácido Pirúvico/metabolismo , Succinato Desidrogenase/metabolismo , Animais , Ácidos Carboxílicos/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Transformada , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Humanos , Immunoblotting , Rim/citologia , Rim/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Masculino , Metabolômica/métodos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Piruvato Carboxilase/metabolismo , Interferência de RNA , Succinato Desidrogenase/genética
15.
Sci Rep ; 5: 7928, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25604397

RESUMO

We evaluated the quality and content of fish oil supplements in New Zealand. All encapsulated fish oil supplements marketed in New Zealand were eligible for inclusion. Fatty acid content was measured by gas chromatography. Peroxide values (PV) and anisidine values (AV) were measured, and total oxidation values (Totox) calculated. Only 3 of 32 fish oil supplements contained quantities of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) that were equal or higher than labelled content, with most products tested (69%) containing <67%. The vast majority of supplements exceeded recommended levels of oxidation markers. 83% products exceeded the recommended PV levels, 25% exceeded AV thresholds, and 50% exceeded recommended Totox levels. Only 8% met the international recommendations, not exceeding any of these indices. Almost all fish oil supplements available in the New Zealand market contain concentrations of EPA and DHA considerably lower than claimed by labels. Importantly, the majority of supplements tested exceeded the recommended indices of oxidative markers. Surprisingly, best-before date, cost, country of origin, and exclusivity were all poor markers of supplement quality.


Assuntos
Suplementos Nutricionais/análise , Ácidos Docosa-Hexaenoicos/análise , Ácido Eicosapentaenoico/análise , Análise de Alimentos , Qualidade dos Alimentos , Ácidos Docosa-Hexaenoicos/química , Ácido Eicosapentaenoico/química , Humanos , Nova Zelândia , Oxirredução
16.
J Neurochem ; 133(1): 53-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25522164

RESUMO

Cultures of dissociated hippocampal neurons are often used to study neuronal cell biology. We report that the development of these neurons is strongly affected by chemicals leaching from commonly used disposable medical-grade syringes and syringe filters. Contamination of culture medium by bioactive substance(s) from syringes and filters occurred with multiple manufacturing lots and filter types under normal use conditions and resulted in changes to neurite growth, axon formation and the neuronal microtubule cytoskeleton. The effects on neuronal morphology were concentration dependent and significant effects were detected even after substantial dilution of the contaminated medium. Gas chromatography-mass spectrometry analyses revealed many chemicals eluting from the syringes and filters. Three of these chemicals (stearic acid, palmitic acid and 1,2-ethanediol monoacetate) were tested but showed no effects on neurite growth. Similar changes in neuronal morphology were seen with high concentrations of bisphenol A and dibutyl phthalate, two hormonally active plasticisers. Although no such compounds were detected by gas chromatography­mass spectrometry, unknown plasticisers in leachates may affect neurites. This is the first study to show that leachates from laboratory consumables can alter the growth of cultured hippocampal neurons. We highlight important considerations to ensure leachate contamination does not compromise cell biology experiments.


Assuntos
Axônios/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Plásticos/química , Seringas , Animais , Axônios/ultraestrutura , Compostos Benzidrílicos/química , Compostos Benzidrílicos/farmacologia , Células Cultivadas , Dibutilftalato/química , Dibutilftalato/farmacologia , Equipamentos Descartáveis , Filtração/instrumentação , Camundongos , Neuritos/ultraestrutura , Neurogênese/efeitos dos fármacos , Fenóis/química , Fenóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA