Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 24(4): 391-395, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36775660

RESUMO

Cucumber mosaic virus (CMV) is vectored by aphids, including Myzus persicae. Tobacco (Nicotiana tabacum 'Xanthi') plants infected with a mutant of the Fny strain of CMV (Fny-CMVΔ2b, which cannot express the CMV 2b protein) exhibit strong resistance against M. persicae, which is manifested by decreased survival and reproduction of aphids confined on the plants. Previously, we found that the Fny-CMV 1a replication protein elicits aphid resistance in plants infected with Fny-CMVΔ2b, whereas in plants infected with wild-type Fny-CMV this is counteracted by the CMV 2b protein, a counterdefence protein that, among other things, inhibits jasmonic acid (JA)-dependent immune signalling. We noted that in nontransformed cv. Petit Havana SR1 tobacco plants aphid resistance was not induced by Fny-CMVΔ2b, suggesting that not all tobacco varieties possess the factor(s) with which the 1a protein interacts. To determine if 1a protein-induced aphid resistance is JA-dependent in Xanthi tobacco, transgenic plants were made that expressed an RNA silencing construct to diminish expression of the JA co-receptor CORONATINE-INSENSITIVE 1. Fny-CMVΔ2b did not induce resistance to M. persicae in these transgenic plants. Thus, aphid resistance induction by the 1a protein requires JA-dependent defensive signalling, which is countered by the CMV 2b protein.


Assuntos
Afídeos , Cucumovirus , Infecções por Citomegalovirus , Animais , Nicotiana/genética , Cucumovirus/genética , Doenças das Plantas
2.
Mol Plant Pathol ; 22(9): 1082-1091, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34156752

RESUMO

Many aphid-vectored viruses are transmitted nonpersistently via transient attachment of virus particles to aphid mouthparts and are most effectively acquired or transmitted during brief stylet punctures of epidermal cells. In Arabidopsis thaliana, the aphid-transmitted virus cucumber mosaic virus (CMV) induces feeding deterrence against the polyphagous aphid Myzus persicae. This form of resistance inhibits prolonged phloem feeding but promotes virus acquisition by aphids because it encourages probing of plant epidermal cells. When aphids are confined on CMV-infected plants, feeding deterrence reduces their growth and reproduction. We found that CMV-induced inhibition of growth as well as CMV-induced inhibition of reproduction of M. persicae are dependent upon jasmonate-mediated signalling. BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) is a co-receptor enabling detection of microbe-associated molecular patterns and induction of pattern-triggered immunity (PTI). In plants carrying the mutant bak1-5 allele, CMV induced inhibition of M. persicae reproduction but not inhibition of aphid growth. We conclude that in wildtype plants CMV induces two mechanisms that diminish performance of M. persicae: a jasmonate-dependent and PTI-dependent mechanism that inhibits aphid growth, and a jasmonate-dependent, PTI-independent mechanism that inhibits reproduction. The growth of two crucifer specialist aphids, Lipaphis erysimi and Brevicoryne brassicae, was not affected when confined on CMV-infected A. thaliana. However, B. brassicae reproduction was inhibited on CMV-infected plants. This suggests that in A. thaliana CMV-induced resistance to aphids, which is thought to incentivize virus vectoring, has greater effects on polyphagous than on crucifer specialist aphids.


Assuntos
Afídeos , Proteínas de Arabidopsis/metabolismo , Arabidopsis , Cucumovirus , Doenças das Plantas/virologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Arabidopsis/virologia , Cucumovirus/patogenicidade , Ciclopentanos , Oxilipinas
3.
Mol Plant Pathol ; 21(2): 250-257, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31777194

RESUMO

Cucumber mosaic virus (CMV), which is vectored by aphids, has a tripartite RNA genome encoding five proteins. In tobacco (Nicotiana tabacum), a subgroup IA CMV strain, Fny-CMV, increases plant susceptibility to aphid infestation but a viral mutant unable to express the 2b protein (Fny-CMV∆2b) induces aphid resistance. We hypothesized that in tobacco, one or more of the four other Fny-CMV gene products (the 1a or 2a replication proteins, the movement protein, or the coat protein) are potential aphid resistance elicitors, whilst the 2b protein counteracts induction of aphid resistance. Mutation of the Fny-CMV 2b protein indicated that inhibition of virus-induced resistance to aphids (Myzus persicae) depends on amino acid sequences known to control nucleus-to-cytoplasm shuttling. LS-CMV (subgroup II) also increased susceptibility to aphid infestation but the LS-CMV∆2b mutant did not induce aphid resistance. Using reassortant viruses comprising different combinations of LS and Fny genomic RNAs, we showed that Fny-CMV RNA 1 but not LS-CMV RNA 1 conditions aphid resistance in tobacco, suggesting that the Fny-CMV 1a protein triggers resistance. However, the 2b proteins of both strains suppress aphid resistance, suggesting that the ability of 2b proteins to inhibit aphid resistance is conserved among divergent CMV strains.


Assuntos
Cucumovirus/metabolismo , Cucumovirus/patogenicidade , Ciclopentanos/metabolismo , Nicotiana/virologia , Oxilipinas/metabolismo , Interferência de RNA
4.
Virol J ; 14(1): 91, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28468686

RESUMO

BACKGROUND: Aphids, including the generalist herbivore Myzus persicae, transmit cucumber mosaic virus (CMV). CMV (strain Fny) infection affects M. persicae feeding behavior and performance on tobacco (Nicotiana tabacum), Arabidopsis thaliana and cucurbits in varying ways. In Arabidopsis and cucurbits, CMV decreases host quality and inhibits prolonged feeding by aphids, which may enhance virus transmission rates. CMV-infected cucurbits also emit deceptive, aphid-attracting volatiles, which may favor virus acquisition. In contrast, aphids on CMV-infected tobacco (cv. Xanthi) exhibit increased survival and reproduction. This may not increase transmission but might increase virus and vector persistence within plant communities. The CMV 2b counter-defense protein diminishes resistance to aphid infestation in CMV-infected tobacco plants. We hypothesised that in tobacco CMV and its 2b protein might also alter the emission of volatile organic compounds that would influence aphid behavior. RESULTS: Analysis of headspace volatiles emitted from tobacco plants showed that CMV infection both increased the total quantity and altered the blend produced. Furthermore, experiments with a CMV 2b gene deletion mutant (CMV∆2b) showed that the 2b counter-defense protein influences volatile emission. Free choice bioassays were conducted where wingless M. persicae could choose to settle on infected or mock-inoculated plants under a normal day/night regime or in continual darkness. Settling was recorded at 15 min, 1 h and 24 h post-release. Statistical analysis indicated that aphids showed no marked preference to settle on mock-inoculated versus infected plants, except for a marginally greater settlement of aphids on mock-inoculated over CMV-infected plants under normal illumination. CONCLUSIONS: CMV infection of tobacco plants induced quantitative and qualitative changes in host volatile emission and these changes depended in part on the activity of the 2b counter-defense protein. However, CMV-induced alterations in tobacco plant volatile emission did not have marked effects on the settling of aphids on infected versus mock-inoculated plants even though CMV-infected plants are higher quality hosts for M. persicae.


Assuntos
Afídeos/virologia , Cucumovirus/fisiologia , Insetos Vetores/virologia , Nicotiana/virologia , Proteínas Virais/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais , Afídeos/fisiologia , Cucumovirus/genética , Cucumovirus/patogenicidade , Comportamento Alimentar/fisiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Interferência de RNA
5.
J Gen Virol ; 95(Pt 3): 733-739, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24362960

RESUMO

The cucumber mosaic virus (CMV) 2b viral suppressor of RNA silencing (VSR) inhibits host responses to jasmonic acid (JA), a chemical signal regulating resistance to insects. Previous experiments with a CMV subgroup IA strain and its 2b gene deletion mutant suggested that VSRs might neutralize aphid (Myzus persicae) resistance by inhibiting JA-regulated gene expression. To further investigate this, we examined JA-regulated gene expression and aphid performance in Nicotiana benthamiana infected with Potato virus X, Potato virus Y, Tobacco mosaic virus and a subgroup II CMV strain, as well as in transgenic plants expressing corresponding VSRs (p25, HC-Pro, 126 kDa and 2b). All the viruses or their VSRs inhibited JA-induced gene expression. However, this did not always correlate with enhanced aphid performance. Thus, VSRs are not the sole viral determinants of virus-induced changes in host-aphid interactions and interference with JA-regulated gene expression cannot completely explain enhanced aphid performance on virus-infected plants.


Assuntos
Afídeos/fisiologia , Cucumovirus/genética , Ciclopentanos/metabolismo , Interações Hospedeiro-Parasita , Nicotiana/genética , Oxilipinas/metabolismo , Doenças das Plantas/virologia , RNA Viral/genética , Supressão Genética , Animais , Cucumovirus/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Potexvirus/fisiologia , RNA Viral/metabolismo , Nicotiana/parasitologia , Nicotiana/fisiologia , Nicotiana/virologia
6.
PLoS One ; 8(12): e83066, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349433

RESUMO

BACKGROUND: Virus-induced deterrence to aphid feeding is believed to promote plant virus transmission by encouraging migration of virus-bearing insects away from infected plants. We investigated the effects of infection by an aphid-transmitted virus, cucumber mosaic virus (CMV), on the interaction of Arabidopsis thaliana, one of the natural hosts for CMV, with Myzus persicae (common names: 'peach-potato aphid', 'green peach aphid'). METHODOLOGY/PRINCIPAL FINDINGS: Infection of Arabidopsis (ecotype Col-0) with CMV strain Fny (Fny-CMV) induced biosynthesis of the aphid feeding-deterrent 4-methoxy-indol-3-yl-methylglucosinolate (4MI3M). 4MI3M inhibited phloem ingestion by aphids and consequently discouraged aphid settling. The CMV 2b protein is a suppressor of antiviral RNA silencing, which has previously been implicated in altering plant-aphid interactions. Its presence in infected hosts enhances the accumulation of CMV and the other four viral proteins. Another viral gene product, the 2a protein (an RNA-dependent RNA polymerase), triggers defensive signaling, leading to increased 4MI3M accumulation. The 2b protein can inhibit ARGONAUTE1 (AGO1), a host factor that both positively-regulates 4MI3M biosynthesis and negatively-regulates accumulation of substance(s) toxic to aphids. However, the 1a replicase protein moderated 2b-mediated inhibition of AGO1, ensuring that aphids were deterred from feeding but not poisoned. The LS strain of CMV did not induce feeding deterrence in Arabidopsis ecotype Col-0. CONCLUSIONS/SIGNIFICANCE: Inhibition of AGO1 by the 2b protein could act as a booby trap since this will trigger antibiosis against aphids. However, for Fny-CMV the interplay of three viral proteins (1a, 2a and 2b) appears to balance the need of the virus to inhibit antiviral silencing, while inducing a mild resistance (antixenosis) that is thought to promote transmission. The strain-specific effects of CMV on Arabidopsis-aphid interactions, and differences between the effects of Fny-CMV on this plant and those seen previously in tobacco (inhibition of resistance to aphids) may have important epidemiological consequences.


Assuntos
Afídeos , Arabidopsis , Cucumovirus/metabolismo , Comportamento Alimentar , Interações Hospedeiro-Parasita , Proteínas Virais/metabolismo , Animais , Afídeos/fisiologia , Afídeos/virologia , Arabidopsis/parasitologia , Arabidopsis/virologia
7.
Sci Rep ; 1: 187, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22355702

RESUMO

The cucumber mosaic virus (CMV) 2b protein not only inhibits anti-viral RNA silencing but also quenches transcriptional responses of plant genes to jasmonic acid, a key signalling molecule in defence against insects. This suggested that it might affect interactions between infected plants and aphids, insects that transmit CMV. We found that infection of tobacco with a 2b gene deletion mutant (CMVΔ2b) induced strong resistance to aphids (Myzus persicae) while CMV infection fostered aphid survival. Using electrical penetration graph methodology we found that higher proportions of aphids showed sustained phloem ingestion on CMV-infected plants than on CMVΔ2b-infected or mock-inoculated plants although this did not increase the rate of growth of individual aphids. This indicates that while CMV infection or certain viral gene products might elicit aphid resistance, the 2b protein normally counteracts this during a wild-type CMV infection. Our findings suggest that the 2b protein could indirectly affect aphid-mediated virus transmission.


Assuntos
Afídeos/fisiologia , Cucumovirus/genética , Inativação Gênica , Nicotiana/genética , Proteínas Virais/genética , Animais , Comportamento Animal , Cucumovirus/fisiologia , Ciclopentanos/metabolismo , Comportamento Alimentar , Deleção de Genes , Mutação , Nicotina/metabolismo , Oxilipinas/metabolismo , Floema/metabolismo , Doenças das Plantas , RNA Interferente Pequeno/metabolismo , Nicotiana/virologia , Proteínas Virais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA